cho a,, là ba số dương thỏa mãn \(a+b+c=\frac{3}{4}\)
CMR: \(\sqrt[3]{a+3b}+\sqrt[3]{b+3c}+\sqrt[3]{c+3a}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)
\(\Rightarrow\dfrac{a}{\sqrt[3]{3a+bc}}\le\dfrac{a}{\sqrt[3]{a\left(a+b+c\right)+bc}}=\sqrt[3]{2}.\sqrt[3]{\dfrac{a}{a+b}.\dfrac{a}{a+c}.\dfrac{a}{2}}\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{a}{2}\right)\)
Cộng vế và rút gọn:
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(3+\dfrac{3}{2}\right)=\dfrac{3\sqrt[3]{2}}{2}\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)
chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)
hoán vị theo a,b,c
ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)
Áp dụng bất C-S:
\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)
\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)
Dấu "=" xảy ra tại a=b=c=1
cái này dễ thôi, Áp dụng bđt cô si ta có
\(\sqrt[3]{a+3b}\le\frac{a+3b+1+1}{3}\)
tương tự và + vào ta có \(A\le\frac{4\left(a+b+c\right)+6}{3}=3\) (đpcm)
dấu = xảy ra <=> a=b=c=1/4