các bạn giải hộ mình nha!
Cho hai số dương x,y thỏa mãn: x+2y=3 . Chứng minh rằng: \(\frac{1}{x}+\frac{2}{y}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki :
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2y}\right)^2\right]\left[\left(\sqrt{\frac{1}{x}}\right)^2+\left(\sqrt{\frac{2}{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\sqrt{\frac{1}{x}}+\sqrt{2y}\cdot\sqrt{\frac{2}{y}}\right)^2\)
\(\Leftrightarrow\left(x+2y\right)\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(\frac{\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{y}}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(1+2\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge9\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Cách khác:
Với x,y >0.Áp dụng bđt svac -xơ có:
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{3}=3\)
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra <=> x=y=1
Đặt \(A=\frac{1}{x}+\frac{2}{y}\)
\(\Rightarrow\) \(3A=\left(\frac{1}{x}+\frac{2}{y}\right)\left(x+2y\right)\) (do \(x+2y=3\) )
nên \(3A=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) đối với bộ số không âm gồm \(\left(\frac{x}{y};\frac{y}{x}\right)\) , ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Do đó, \(3A\ge2.2+5=9\)
Hay nói cách khác, \(A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy, \(A_{min}=3\) \(\Leftrightarrow\) \(x=y=1\)
dùng cô si ( AM - GM ) thêm bớt nhanh hơn .
dự đoán điểm rơi x = y = 1
Gải : \(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\left(1\right).\)
\(\frac{2}{y}+2y\ge2\sqrt{\frac{2}{y}.2y}=4\left(2\right).\)
cống vế với vế của (1) và (2) ta được : \(\frac{1}{x}+\frac{2}{y}+3\ge6\) ( do x + 2y = 3 )
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)dấu "=" xẩy ra khi x = y = 1
4.
Xét biểu thức : \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{k-\left(k-1\right)-1}{k\left(k-1\right)}\right)=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{1}{k-1}-\frac{1}{k}-\frac{1}{k\left(k-1\right)}\right)=\left(1+\frac{1}{\left(k-1\right)}-\frac{1}{k}\right)^2\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|1+\frac{1}{k-1}-\frac{1}{k}\right|\)
Áp dụng : \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1}-\frac{1}{2}\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
...............................................................
\(\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}=1+\frac{1}{2015}-\frac{1}{2016}\)
Cộng vế các đẳng thức trên được : \(B=2016-\frac{1}{2016}\)
ý thứ 2 là 8/7 chứ không phải 8/8 các bạn nhé. M đánh nhầm chữ
b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:
\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)
\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Áp dụng bđt AM - GM ta có :
\(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\)
\(\frac{2}{y}+2y=2\left(\frac{1}{y}+y\right)\ge2.2\sqrt{\frac{1}{y}.y}=4\)
Cộng vế với vế ta được : \(\frac{1}{x}+\frac{2}{y}+x+2y\ge6\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}+3\ge6\Rightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Ta có:\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow x=y=1}\)
:))