Cho \(E=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right).\)( n \(\in\)N*). CMR : 4E + 1 luôn là bình phương của một số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4=
=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]=
=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-(k-1)k(k+1)(k+2)+k(k+1)(k+2)(k+3)=
=k(k+1)(k+2)(k+3)=k(k+3)(k+1)(k+2)=
=(k2+3k)(k2+3k+2)=(k2+3k)2+2(k2+3k)
=> 4S+1=(k2+3k)2+2(k2+3k)+1=[(k2+3k)+1]2
S1= 1.2.3
S2= 2.3.4
S3=3.4.5
...........
Sn = n(n+1)(n+2)
S= S1+S2+S3+...+Sn
Chứng minh 4S + 1 là 1 số chính phương
\(S=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+k\left(k+1\right)\left(k+2\right)\)
\(\Rightarrow4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=1\cdot2\cdot3\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+3\cdot4\cdot5\left(6-2\right)+.....+k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\)\(=1\cdot2\cdot3\cdot4-0\cdot1\cdot2\cdot3+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
Ta cần chứng minh:\(k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\) là số chính phương.
Thật vậy:\(k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1=\left[k\left(k+3\right)\right]\left[\left(k+1\right)\left(k+2\right)\right]+1\)
\(=\left(k^2+3k\right)\left(k^2+3k+2\right)+1\left(1\right)\)
Đặt \(k^2+3k=t\) thì (1) sẽ trở thành:
\(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(k^2+3k+1\right)^2\)
Vì \(k\in N\)nên \(\left(k^2+3k+1\right)^2\) là số chính phương hay \(4S+1\) là số chính phương.
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)
\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)
\(\Leftrightarrow n^2+3n-2548=0\)
\(\Rightarrow n=49\)
- Với \(n=1\Rightarrow1.2.3=\frac{1.2.3.4}{4}\) (đúng)
- Giả sử biểu thức đúng với \(n=k\) hay:
\(1.2.3+...+k\left(k+1\right)\left(k+2\right)=\frac{k\left(k+1\right)\left(k+2\right)\left(k+3\right)}{4}\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1.2.3+...+k\left(k+1\right)\left(k+2\right)+\left(k+1\right)\left(k+2\right)\left(k+3\right)=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)\left(k+4\right)}{4}\)
Thật vậy, ta có:
\(1.2.3+...+k\left(k+1\right)\left(k+2\right)+\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
\(=\frac{k\left(k+1\right)\left(k+2\right)\left(k+3\right)}{4}+\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
\(=\left(k+1\right)\left(k+2\right)\left(k+3\right)\left[\frac{k}{4}+1\right]\)
\(=\left(k+1\right)\left(k+2\right)\left(k+3\right).\frac{\left(k+4\right)}{4}\)
\(=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)\left(k+4\right)}{4}\) (đpcm)
Bài toán chia kẹo kinh điển đây mà.
Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:
Bây giờ có số tự nhiên n, ta phân tích nó như sau:
\(n=1+1+1+...+1+1+1\)
Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:
\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)
Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6.
Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\) tấm vách ngăn.
Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).
Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.
Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.
//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.
Khi đó:
\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)
\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)
Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm.
Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:
\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên
Công thức đầu của em có vẻ bị sai :D
Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow A=\frac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)
TK nha!!
Ta có: \(E=1.2.3+2.3.4+.....+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4E=1.2.3.4+2.3.4.\left(5-1\right)+......+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4E=1.2.3.4+2.3.4.5-1.2.3.4+....+\) \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4E=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow4E=n\left(n+3\right)\left(n+1\right)\left(n+2\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt n2 + 3n +1 = y
\(\Rightarrow4E+1=\left(y-1\right)\left(y+1\right)+1=y^2-1+1=y^2\)
\(\Rightarrow4E+1=\left(n^2+3n+1\right)^2\)
Vì n tự nhiên => n2 + 3n + 1 tự nhiên => 4E + 1 là số chính phương
=> đpcm.