cho hệ phương trình :{x+my=3 và mx+4y=7
1,giải hệ phương trình khi m=3
2,tìm m để hệ có nghiệm{x>1 và y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm (1;3) thì
Thay x=1 và y=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)
Thay m=1 vào hpt trên ta có:
1.x+4y=9 và x+1y=8
<=> x+4y=9 và x+y=8
<=> x+4y=9 và 4x+4y=32
<=> -3x = -23 và x+y=8
<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)
b) Để hệ phương trình có nghiệm (1;3)
=> x = 1; y = 3
Thay x = 1; y = 3 vào hpt trên ta có:
m1+43=9 và 1+m3=8
<=> m+12 = 9 và 1 + 3m = 8
<=> m = -3 và m = \(\dfrac{7}{3}\)
Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)
c) mx+4y=9 và x+my=8
SD phương pháp thế
Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9
<=> 8m - y(m2 -4) = 9
Để hệ phương trình có nghiệm duy nhất => m2 -4 \(\ne\) 0
<=> m2 \(\ne\) 4
<=> m \(\ne\) 2 và m \(\ne\) -2
a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Ta có: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2y-4y=3m-6\\mx+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-6}{m^2-4}\\mx=6-4y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m+2\right)\left(m-2\right)}=\dfrac{3}{m+2}\\mx=6-4\cdot\dfrac{3}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=6-\dfrac{12}{m+2}=\dfrac{6\left(m+2\right)-12}{m+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=\dfrac{6m+12-12}{m+2}=\dfrac{6m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6m}{m+2}:m=\dfrac{6m}{m+2}\cdot\dfrac{1}{m}=\dfrac{6}{m+2}\\y=\dfrac{3}{m+2}\end{matrix}\right.\)
Để phương trình có nghiệm x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-1>0\\m+2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-\dfrac{m+2}{m+2}>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>-4\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)
Vậy: Để hệ phương trình có nghiệm x>1 và y>0 thì -2<m<4
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)
1/ khi m=3 ta có
x+3y=3
3x+4y=7
<=>x=3-3y
3(3-3y)+4y=7
<=>x=3-3y
3y+4y=7
<=>x=3-3y
7y=7
==>y=1
<=>x=3-3y
=>x=3-3.1
=>x=3-3
==>x=0
vây x=0 ; y=1