Chung to rang : 5^2012+5^2011+5^2010 chia het cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{2008}\right)⋮7\)
b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
1+5+52+....+5404
= (1+5+52) + (53+54+55) + .......+ (5402 + 5403 + 5404)
= 1(1+5+52) + 53(1+5+52) +......+ 5402(1+5+52)
= 1. 31 + 53. 31 +......+5402. 31
= 31(1 + 53 + ......... + 5402) chia hết cho 31 (đpcm)
1+5+52+....+5404
= (1+5+52) + (53+54+55) + .......+ (5402 + 5403 + 5404)
= 1(1+5+52) + 53(1+5+52) +......+ 5402(1+5+52)
= 1. 31 + 53. 31 +......+5402. 31
= 31(1 + 53 + ......... + 5402) chia hết cho 31 (đpcm)
Ta có\(5^{2012}+5^{2011}+5^{2010}=5^{2010}\left(25+5+1\right)=5^{2010}\cdot31⋮31\)(đpcm)