Cho\(a,b>0\)thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\). Tìm giá trị nhỏ nhất của\(T=\frac{a^4}{b}+\frac{b^4}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)
Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*
Đẳng thức xảy ra khi t = 3 hay a = b = c = 1
2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Đẳng thức xảy ra khi x = y
Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)
Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)
\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)
\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng Bđt Bunhiacopski ta cũng có:
\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = khi \(x=y=\frac{1}{2}\)
Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)
\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)
Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)
Cộng vế 2 PT trên lại ta được:
\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)
\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)
Thay vào M ta được:
\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)
\(M=a^4+2a^2-8a+2026\)
\(M=\left(a^4+2a^2-8a+5\right)+2021\)
\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)
\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)
\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)
Dấu "=" xảy ra khi: a = 1 => b = -1
Vậy Min(M) = 2021 khi a = 1 và b = -1
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)