Tìm tất cả các số tự nhiên n sao cho:
\(2.16\ge2^n\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.16 ≥ \(2^n\) ≥ 4
⇒ 32 ≥ \(2^n\) ≥4
⇒ \(2^5\) ≥ \(2^n\) ≥ \(2^2\)
⇒ 5 ≥ n ≥ 2
⇒ n ∈ {5;4;3;2}
a).
\(2.16=2.2^4=2^5\\ 4=2^2\)
theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)
vì n là số tự nhiên nên : \(n=5;4;3\)
b).
\(9.27=3^2.3^3=3^5\\ 243=3^5\)
theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)
=> n=5
Giải:
a)2.16\(\ge\)2n>4
2.24\(\ge\)2n>22
25\(\ge\)2n>22
\(\Rightarrow\)5\(\ge\)n>2
\(\Rightarrow\)n\(\in\){3;4;5}
b)9.27\(\le\)3n\(\le\)243
32.33\(\le\)3n\(\le\)35
35\(\le\)3n\(\le\)35
5\(\le\)n\(\le\)5
\(\Rightarrow\)n=5
2.16 ≥ 2n > 4 ⇒ 2. 24 ≥ 2n > 22
⇒ 25 ≥ 2n > 22
⇒ 5 ≥ n > 2
⇒ n ∈ {3; 4; 5}
\(2.32\ge2^n>8\\ \Rightarrow2^6\ge2^n>2^3\\ \Rightarrow n\in\left\{4;5;6\right\}\)
\(2.32=2.2^5=2^6\ge2^n>8=2^3\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{6;5;4\right\}\)
a) ta có 2.16\(\ge\)2n > 4
\(\rightarrow\)2.24\(\ge\)2n>22
\(\rightarrow\) 25\(\ge\)2n>22
\(\Rightarrow\) n\(\in\){ 3;4;5}
b) làm tương tự
\(2.16\ge2^n\ge4\)
\(\Rightarrow32\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
\(\Rightarrow n\le\left\{3;4;5\right\}\)
\(2.16\ge2^n\ge4\Rightarrow2.2^4\ge2^n\ge2^2\Rightarrow2^5\ge2^n\ge2^2\Rightarrow5\ge n\ge2\Rightarrow n=\left(5;4;3;2\right)\)