Cho tam giác ABC vuông tại A có AB=15cm, AC=20cm. Chứng minh rằng đường thắng BC là tiếp tuyến của đường tròn tâm A, bán kính 12cm.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
11 tháng 8 2021
a) Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường trung tuyến ứng với cạnh BC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC\(\left(1\right)\)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC\(\left(2\right)\)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng
\(\Leftrightarrow A,O,H,D\) thẳng hàng
hay AD là đường kính của \(\left(O\right)\)
6 tháng 1 2023
Kẻ AH vuông góc với BC
\(BC=\sqrt{12^2+16^2}=20\)
AH=12*16/20=9,6
Xét (A;9,6) có
AH là bán kính
BC vuông góc với AH tại H
Do đó: BC là tiếp tuyến của (A)
Kẻ đường cao AH ( H thuộc BC)
Theo hệ thức giữa cạnh và đường cao trong tam giác vuông tính được \(\frac{1}{AH^2}\) =\(\frac{1}{AB^2}\) +\(\frac{1}{AC^2}\) (chỗ này bn tự thay số ở đề bài để tính nha)=>AH=12(=R)
=> đường thắng BC là tiếp tuyến của đường tròn tâm A, bán kính 12cm
chúc bn học tốt