K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

1) Do B, C cùng thuộc đường tròn đường kính AO nên \(\widehat{ABO}=\widehat{ACO}=90^o\)  (Góc nội tiếp chắn nửa đường tròn)

Vậy nên AB, AC là các tiếp tuyến của đường tròn (O).

Xét tam giác vuông ABO có \(AO=R\sqrt{2};OB=R\)

Áp dụng định lý Pi-ta-go ta có:

\(AB=\sqrt{AO^2-BO^2}=R\)

Vậy thì AC = AB = R.

2) Ta thấy tứ giác ABOC có AB = BO = OC = CA = R nên nó là hình thoi.

Lại có \(\widehat{ABO}=90^o\) nên ABOC là hình vuông.

3) Xét tam giác ADC và tam gác ACE có:

Góc A chung

\(\widehat{ACD}=\widehat{AEC}\)  (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung DC)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{AC}{AE}\Leftrightarrow AD.AE=AC^2=R^2\) = hằng số.

Hoàn toàn tương tự ta cũng có AM.AN = AB2 = R2 = hằng số.

Vậy nên AM.AN = AD.AE = R2.

4) Xét đường tròn (O), ta có K là trung điểm dây cung MN nên theo liên hệ đường kính dây cung, ta có:   \(OK\perp MN\) hay \(\widehat{AKO}=90^o\)

Vậy thì K thuộc đường tròn đường kính OA.

Do AMN là cát tuyến nên K thuộc cung tròn BmC (trên hình vẽ).

5) Ta có ABOC là hình vuông nên AO và BC cắt nhau tại trung điểm mỗi đường.

Vậy thì BC qua tâm I.

Từ đó ta có \(\widehat{IJO}=90^o\)

Lại vừa chứng minh được \(\widehat{JKO}=90^o\).

Tứ giác IJKO có tổng hai góc đối bằng 180o nên IJKO là tứ giác nội tiếp hay O, K, I, J cùng thuộc một đường tròn.

Ta có AB = AC nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{BKA}=\widehat{CBA}=\widehat{JBA}\)

Vậy thì \(\Delta ABJ\sim\Delta AKB\left(g-g\right)\Rightarrow\frac{AB}{AK}=\frac{AJ}{AB}\Rightarrow AJ.AK=AB^2\)

18 tháng 12 2021

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

12 tháng 4 2018

a, Gọi I là trung điểm của AB, ta có: OI = OA – IA

b, Ta chứng minh được IC//BD//OE

Mà OB = BI = IA => AC = CD = DE

26 tháng 12 2021

a: \(AB=R\sqrt{3}\)

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)

16 tháng 12 2022

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét (O) co

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>CD//OA

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)