K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow a=b;b=c;c=a\)

Làm nốt nhé

10 tháng 12 2017

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)

\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow a=b;b=c;c=a\)

Ta thấy : mỗi số hạng đều xuất hiện 2 lần và chúng đều bằng nhau.

  Mà  tổng của  \(a+b+c=3\)

\(\Leftrightarrow a=1;b=1;c=1\)

5 tháng 11 2019

a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)

Từ \(\frac{x}{3}=10=>x=30\)

Từ \(\frac{y}{4}=10=>y=40\)

Từ \(\frac{z}{5}=10=>z=50\)

Vậy x=30,y=40,z=50

b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)

Đpcm

5 tháng 11 2019

a)Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20

-> \(\frac{x}{3}\)= 20 ->x=20*3=60

\(\frac{y}{4}\)=20->y=20*4=80

\(\frac{z}{5}\)=20->z=20*5=100

Vậy x=60, y=80, z=100.

9 tháng 8 2016

Gọi số dư của a và b khi chia m là n 

Ta có: a=m*k+n 

          b=m*h+n

=>a-b=m*k+n -(m*h+n)

=m*k+n-m*h-n

=(m*k-m*h)+(n-n)

=m(k-h) luôn chia hết m

Đpcm 

9 tháng 8 2016

là dấu nhân đó

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/58559568033.html

Chúc bạn học tốt

Forever 

26 tháng 2 2020

cảm ơn bn nha!!!

14 tháng 7 2017

mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn

16 tháng 7 2017

- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

8 tháng 1 2017

với a+b+c khác 0 

=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2

=> A=1/2

với a+b+c =0

=>a+b= -c

b+c= -a

a+c= -b

thay vào A ta được :

=>A= a/-a = b/-b = c/-c=-1

=>A= -1

vậy A= -1 hoặc 1/2

8 tháng 1 2017

1)a,b,c có khác 0 không bạn

nếu khác 0 thì tớ mới làm được

29 tháng 5 2017

Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)

\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1);(2) => 1 < M < 2 => đpcm

18 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)

Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)

\(\Rightarrow a+b+c+1=3a\)

\(\Rightarrow\frac{1}{2}+1=3a\)

\(\Rightarrow3a=\frac{3}{2}\)

\(\Rightarrow a=\frac{1}{2}\)

Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)

\(\Rightarrow a+b+c+2=3b\)

\(\Rightarrow\frac{1}{2}+2=3b\)

\(\Rightarrow\frac{5}{2}=3b\)

\(\Rightarrow b=\frac{5}{6}\)

Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)

\(\Rightarrow a+b+c-3=3c\)

\(\Rightarrow\frac{1}{2}-3=3c\)

\(\Rightarrow\frac{-5}{2}=3c\)

\(\Rightarrow c=\frac{-5}{6}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)

18 tháng 12 2016

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)

\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)

\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

 

6 tháng 7 2021

1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)

Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

\(\Rightarrow A=4\)

2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)

6 tháng 7 2021

Bài 2 :

a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy ...

b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy ...