Cho x^5+y^5=x-y và x>y>0.CMR:x^4+y^4<1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LT
1
NH
0
DG
0
24 tháng 5 2016
Từ x+y+z=1 => 1-x = y+z
Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\), ta có : \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2.\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)
\(\Rightarrow1+y=x+2y+z\ge4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)(ĐPCM)
D
0
M
0
KS
0
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\) \(\left(1\right)\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)
Ta có: \(x>y>0\)
\(\Rightarrow x^5-y^5< x^5+y^5\)
\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)
Lại có: \(x>y>0\)
\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)
Từ (1) và (2) suy ra : \(x^4+y^4< 1\)
Vậy \(x^4+y^4< 1\)(đpcm)