B= 3 - 3 mũ 2 + 3 mũ 3 - 3 mũ 4 + ... + 3 mũ 2013 - 3 mũ 2014 + 3 mũ 2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 33 + 35 + 37 + ........ + 32013 + 32015
32A = 33 + 35 + ........ + 32017
9A = 33 + 35 + .......... + 32017
9A - A =( 33 + 35 +......... + 32017 ) - ( 3 + 33 + 35 + 37 + ........ + 32013 + 32015 )
9A - A = 33 + 35 + ........ + 32017 - 3 - 33 - 35 - 37 - ......... - 32013 - 32015
=> 8A = 32017 - 3
=> A = \(\frac{3^{2017}-3}{8}\)
Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015
= ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)
= 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)
= 3.91+3^7.91+......+3^2011.91
= (3+3^7+.....+3^2011).91
Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13
Vậy S chia hết cho 13
Bài giải
Ta có: C = 2014 + 20142 + 20143 +...+ 20142018
=> C = (2014.1 + 2014.2014) + (20142.1 + 20142.2014) +
(20143.1 + 20143.2014) +...+
(20142017.1 + 20142017.2018)
=> C = 2014.(2014 + 1) + 20143.(2014 + 1) +...+ 20142017.(2014 + 1)
=> C = (2014 + 20143 +...+ 20142017).(2014 + 1)
=> C = 2015.(2014 + 20143 +...+ 20142017
Vì 2015."viết lại" \(⋮\)2015
Nên C \(⋮\)2015
Vậy...
Ta có:31+32+........+32016
=(31+32)+.......+(32015+32016)
=3(1+3)+.......+32015(1+3)
=3.4+......+32015.4
=4(3+.....+32015)
VÌ 4 chia hết cho4 nên A chia hết cho 4
Ta có 3+32+33+.......+32014+32015+32016
(3+32+33)+......+(32014+32015+32016)
=3(1+3+6)+....+32014(1+3+6)
=3.7+........+32014.7
=7.(3+...+32014)
Vì7 chia hết cho 7 nênA sẽ chia hết cho 7
Mong các bạn góp ý để bài làm của mình dc hoàn thiện hơn ☺☺☺