K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

\(10^k\)-1 chia hết cho 19=> \(10^k\)  -1 = 19n (n là số tự nhiên)

=>\(10^{k=}19n+1\)=>\(10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=\left(19n+1\right).\left(19n+1\right)=361n^2+38n+1\)

=>\(10^{2k}-1=361n^2+38n+1-1=361n^2+38n\)chia hết cho 19 =>\(10^{2k}-1\)chia hết cho 19

13 tháng 11 2016

\(10^k-1⋮19\Rightarrow10^k\equiv1\left(mod19\right)\)

\(\Rightarrow\left(10^k\right)^2\equiv1^2\left(mod19\right)\)

\(\Rightarrow10^{2k}\equiv1\left(mod19\right)\)

\(\Rightarrow10^{2k}-1\equiv0\left(mod19\right)\)

Vậy ....

28 tháng 6 2016

102k - 1 = (10k)2 - 1

= ( 10k - 1 ) ( 10k + 1 ) chia hết cho 19 vì 10k - 1 chia hết cho 19.

28 tháng 6 2016

10k -1 chia hết cho 19 => 10k - 1 = 19n 

=> 10k = 19n + 1 => 102k = (10k)2 = (19n + 1)2 = (19n + 1)(19n + 1) = 361n2 + 38n + 1

=> 102k - 1 = 361n2 + 38n + 1 - 1 = 361n2 + 38n chia hết cho 19 => 102k - 1 chia hết cho 19

17 tháng 11 2016

Đặt A=\(10^{2k}-1\)

A-\(\left(10^k-1\right)\)=\(10^{2k}-1-\left(10^k-1\right)\)

\(A-\left(10^k-1\right)=10^{2k}-1-10^k+1\)

\(A-\left(10^k-1\right)=\left(10^{2k}-10^k\right)\)

\(A-\left(10^k-1\right)=10^k\left(10^k-1\right)⋮19\)(vì \(10^k-1⋮19\))

\(A-\left(10^k-1\right)⋮19\)

\(\left(10^k-1\right)⋮19\Rightarrow A⋮19\left(đpcm\right)\)

 

 

 

30 tháng 8 2020

Theo một tính chất cơ bản ta dễ có:

\(10^{2k}-1=\left(10^k\right)^2-1⋮10^k-1⋮19\)

Suy ra đpcm

13 tháng 9 2015

Sửa lại đề là: Cho 10- 1 chia hết cho 19

a) 10- 1 chia hết cho 19 => 10- 1 = 19n (n là số tự nhiên)

=> 10k = 19n + 1 => 102k = (10k)= (19n +1)2 = (19n +1)(19n+1)  = 361n2 + 38n + 1

=> 102k - 1  = 361n+ 38n + 1 - 1 = 361n+ 38n chia hết cho 19 => 102k - 1 chia hết cho 19

b) Tường tự,

103k = (10k)= (19n + 1)3 = (19n +1)2.(19n +1) = (361n+ 38n +1).(19n +1) = 6859n3 + 1083n2 + 57n + 1

=> 103k -1 = 6859n3 + 1083n2 + 57n  chia hết cho 19 

vậy 103k - 1 chia hết cho 19 

13 tháng 9 2015

hình như sai đề vì số là lũy thừa của 10 làm gì chia hết cho 19