K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

2) Xét tổng (11a+2b)+(a+34b) =12a +36b

=> a+34b=(12a+36b)-(11a+2b)

Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12

=>(12a+36b)-(11a+2b) chia hết cho 12

=>a+34b chia hết cho 12

3 tháng 12 2021

a, Ta có:\(2a+b+5\left(a+4b\right)=2a+b+5a+20b=7a+21b=7\left(a+3b\right)⋮7\)

Mà \(2a+b⋮7\Rightarrow a+4b⋮7\)

b, Ta có:\(2\left(2a+b\right)+3a-2b=4a+2b+3a-2b=7a⋮7\)

Mà \(2a+b⋮7\Rightarrow3a-2b⋮7\)

30 tháng 3 2021

Giả sử (4a+2b)⋮3(4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Vậy (4a+2b)⋮3

10 tháng 9 2018

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

9 tháng 9 2018

12a chứ ko phải 120a đâu

11 tháng 9 2018

1/ A=12(10a+3b) chia heets cho 12

2/

a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3

b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2