Tìm x biết:
a) / 2x + 3 / - / 8 - 2x / = 5
b) / x + 3 / + / x + 1 / = 3x
Các bn giúp mk nhé !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(x-2\right)+2\left(x-3\right)=5\)
\(\Rightarrow3x-6+2x-6=5\)
\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)
b) \(\left(2x-8\right)^2-16=0\)
\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)
\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)
\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)
\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)
a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)
\(\Leftrightarrow3x-6+2x-6=5\)
\(\Leftrightarrow5x=17\)
hay \(x=\dfrac{17}{5}\)
b: Ta có: \(\left(2x-8\right)^2-16=0\)
\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
a) x3-1-(x2+2x)(x-2)=5
⇔ x3-1-x3+4x=5
⇔ 4x=6
⇔ \(x=\dfrac{3}{2}\)
a) Ta có: \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x=5\)
hay x=5
b) Ta có: \(2x^2-2x=\left(x-1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+9\right)-x\left(x-2\right)^2=19\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-19=0\)
\(\Leftrightarrow x^3+8-x^3+4x^2-4x=0\)
\(\Leftrightarrow4x^2-4x+8=0\)(Vô lý)
Bài 4:
b: Ta có: \(2x\left(x-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
a) PT \(\Leftrightarrow x^2-x-x^2+2x=5\) \(\Rightarrow x=5\)
Vậy ...
b) PT \(\Leftrightarrow8x=16\) \(\Rightarrow x=2\)
Vậy ...
a: Ta có: \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x=5\)
hay x=5
b: Ta có: \(2x\left(3x+4\right)-6x^2=16\)
\(\Leftrightarrow6x^2+8x-6x^2=16\)
\(\Leftrightarrow8x=16\)
hay x=2
a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
=>-4x=5
hay x=-5/4
b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
=>42x=41
hay x=41/42
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)