cho S= 1+5+5^2+5^3+5^4+5^5+5^6+5^7
chứng tỏ rằng S chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
tất cả các số hang cua dãy đều chia hết cho 5 nên S 3 chấm 65
S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012 (2012 số)
S = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +...+ (52009 + 52010 + 52011 + 52012) (503 nhóm)
S = (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) +....+ 52008(5 + 52 + 53 + 54)
S = 780 + 54.780 +...+ 52008.780
S = 780.(1 + 54 +...+ 52008) chia hết cho 65 (Vì 780 chia hết cho 65)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )
= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )
= 5.6 + 53.6 + .... + 599.6
= 6 ( 5 + 53 + ... + 599 )
Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6
Hay S chia hết cho 6 ( đpcm )
Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+599.(1+5)
A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6
mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!
S = (5 + 52) + (53 + 54) +....+(59 + 510)
S = 1.30 + 52.30+....+58.30
S = 30.(1+52+....+58)
S chia hết cho 30
=> ĐPCM
S=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9+5^10
=>S=(5+5^2)+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)+(5^9+5^10)
=>S=30+5^2(5+5^2)+5^4(5+5^2)+5^6(5+5^2)+5^8(5+5^2)
=>S=30+5^2.30+5^4.30+5^6.30+5^8.30
=>S=30(1+5^2+5^4+5^6+5^8)=> S chia hết cho 30
\(5+5^2+5^3+5^4+5^5+...+5^9+5^{10}\)
\(=5+5^2+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^8\left(5+5^2\right)\)
\(=\left(5+5^2\right)\left(1+5^2+5^4+5^6+5^8\right)\)
\(=30.\left(1+5^2+5^4+5^6+5^8\right)\)
vậy S chia hết cho 30
ko hiểu họi lại mik
tick mik nka
S = (1+5)+(5^2+5^3)+(5^4+5^5)+(5^6+5^7)
= 6+5^2.(1+5)+5^4.(1+5)+5^6.(1+5)
= 6+5^2.6+5^4.6+5^6.6
= 6.(1+5^2+5^4+5^6) chia hết cho 6
=> ĐPCM
k mk nha
(1+5)+(5^2+5^3)+........+(5^6+5^7)
=6+5^2(1+5)+......+5^6(1+5)
=6+5^2 . 6 +.....+5^6 . 6
= 6 ( 5^2+.....+5^6)
Suy ra S chia hết cho 6