cho tam giác ABC có diện tích là 180 cm2 . 2 điểm M, N lần lượt thuộc cạnh CA và CB Sao cho CM = 1/3 CA , CN= 2/3 CB. Hai duong BM và AN cắt nhau tại K
a) tinh dien tich AMNB
b) tinh ty so KM/KB = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{S_{ABC}}{S_{ANC}}=\dfrac{BC}{NC}=3\Rightarrow S_{ANC}=\dfrac{1}{3}\cdot240=80\left(cm^2\right)\\ \dfrac{S_{ANC}}{S_{MNC}}=\dfrac{AC}{MC}=\dfrac{5}{2}\Rightarrow S_{MNC}=\dfrac{2}{5}S_{ANC}=32\left(cm^2\right)\\ \Rightarrow S_{AMNB}=S_{ABC}-S_{MNC}=240-32=208\left(cm^2\right)\)
Áp dụng Menelaus cho tam giác ANC và cát tuyến BKM
\(\dfrac{AK}{NK}\cdot\dfrac{NB}{CB}\cdot\dfrac{CM}{AM}=1\\ \Rightarrow\dfrac{AK}{NK}\cdot\dfrac{1}{3}\cdot\dfrac{2}{3}=1\\ \Rightarrow\dfrac{AK}{NK}=\dfrac{9}{2}\)
Áp dụng Menelaus cho tam giác BMC và cát tuyến AKN
\(\dfrac{BK}{MK}\cdot\dfrac{MA}{CA}\cdot\dfrac{CN}{BN}=1\\ \Rightarrow\dfrac{KB}{KM}\cdot\dfrac{3}{2}\cdot\dfrac{1}{2}=1\\ \Rightarrow\dfrac{KB}{KM}=\dfrac{4}{3}\)
Mình cũng đang gặp bài này, có ai biết bài này kh giải chi tiết ra giùm mình với nhé
a) Xét tam giác BMC và tam giác BCA có chung chiều cao hạ từ B xuống AC; đáy CM = 1/3 đáy CA
=> S (BMC) = 1/3 x S(BCA) = 1/3 x 180 = 60
Xét tam giác BMC và tam giác NMC có: chung chiều cao hạ từ đỉnh M xuống cạnh BC; đáy CN = 2/3 đáy CB
=> S(NMC) = 2/3 x S (BMC) = 2/3 x 60 = 40
S(AMNB) = S (ABC) - S(MNC) = 180 - 40 = 140
b) Xét tam giác ABN và tam giác ABC có chung chiều cao hạ từ A xuống đáy BC; đáy BN = 1/3 đáy BC
=> S(ABN) = 1/3 x S (ABC) = 1/3 x 180 = 60
=> S(AMN) = A(AMNB) - S(ABN) = 140 - 60 = 80
=> Tỉ số S(AMN)/ S(ABN) = 80/60 = 4/3
=> Chiều cao hạ M xuống AN : Chiều cao hạ từ B xuống AN = 4: 3 (Vì tam giác ABN và tam giác AMN có chung đáy AN)
Mà tam giác ABK và AMK có chung đáy AK
=> S(AMK) : S(ABK) = 4: 3
Xét 2 tam giác AMK và ABK có chung chiều cao hạ từ A xuống BM ; đáy lần lượt là KM; KB
=> KM/ KB = 4/3
a: S BMC=2/3*90=60cm2
b: S ANC=1/3*90=30cm2
=> S AMN=1/3*30=10cm2
S ABN=2/3*90=60cm2
=>S AMNB=70cm2
a)Nối K với C
SABN = \(\frac{2}{3}\)SABC vì:
- Đáy BN = \(\frac{2}{3}\)đáy BC
- Chung đường cao từ đỉnh A xuống đáy BC
SANM = \(\frac{1}{3}\)SANC vì:
Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh N xuống đáy AC
SABN là:
180 : 3 x 2 = 120 (cm2)
SANC là:
180 - 120 = 60 (cm2)
SANM là:
60 : 3 = 20 (cm2)
Mà SAMNB = SABN + SANM
Vậy SAMNB là:
120 + 20 = 140 (cm2)
b) SBKN = \(\frac{2}{1}\)SNKC vì:
- Đáy BN = \(\frac{2}{1}\)đáy NC
- Chung đường cao từ đỉnh K xuống đáy BC
Mà hai tam giác này còn chung đáy KN, suy ra đường cao từ đỉnh B xuống đáy KN = \(\frac{2}{1}\)đường cao từ đỉnh C xuống đáy KN
Hai đường cao này lần lượt là đường cao của hai tam giác ABK và ACK, => SABK = \(\frac{2}{1}\)SACK
- SAMK = \(\frac{1}{3}\)SACK vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh K xuống đáy AC
Ta có:
SACK = \(\frac{1}{2}\)SABK
SAMK = \(\frac{1}{3}\)SACK
=> SAMK = \(\frac{1}{3}\)x \(\frac{1}{2}=\frac{1}{6}\)SABK
SABM = \(\frac{1}{3}\)SABC vì:
- Đáy AM = \(\frac{1}{3}\)đáy AC
- Chung đường cao từ đỉnh B xuống đáy AC
S ABM là:
180 : 3 = 60 (cm2)
Ta có:
SABM = SAMK + SABK
Vậy coi SAMK là 1 phần thì SABK là 6 phần như thế, SABM là : 6 + 1 = 7 (phần như vậy)
S ABK là:
60 : 7 x 6 = \(\frac{360}{7}\)(cm2)
Đáp số: a) 140cm2
b) \(\frac{360}{7}\)cm2