Cho A = 5 - 5^2 + 5^3 -5^4 +...- 5^98 + 5^99 . Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 - 52 + 53 - 54 + ... - 598 + 599
<=> 5A = 52 - 53 + 54 - 55 + ... - 599 + 5100
<=> 5A + A = ( 52 - 53 + ...- 599 + 5100 ) + ( 5 - 52 + ... - 598 + 599)
<=> 6A = 5100 + 5
<=> A = 5100 + 5/6
cái cuối là A = \(\frac{5^{100}+5}{6}\)
hộ mình nhé :)
5A = 52 + 53 + 54 +...+ 5^100
=> 4A = 5A - A = 5^100 - 5 = 5(5^99-1)
=> A = 5(5^99-1)/4
A = 5 – 5^2 + 5^3 – 5^4 + …- 5^98 + 5^99 =>5A = 5^2 – 5^3 + 5^4 - …+ 5^98 – 5^99 + 5^100
Tính và rút gọn được 6A = 5 + 5^100
A=(5+5^100):6
Vậy A=(5+5^100):6
A = 5 - 52 + 53 - 54 +...+ 597 - 598 + 599
5A = 52 - 53 + 54-.....-597 + 598 - 599 + 5100
5A + A = 5 + 5100
6A = 5 + 5100
A = \(\dfrac{5+5^{100}}{6}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b)\(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
ta có:
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...
\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
b,
\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.16}+...+\frac{5}{61.66}\)
ta có:
\(\frac{5}{11.16}=\frac{16-11}{11.16}=\frac{16}{11.16}-\frac{11}{11.16}=\frac{1}{11}-\frac{1}{16}\)
\(\frac{5}{16.21}=\frac{21-16}{16.21}=\frac{21}{16.21}-\frac{16}{16.21}=\frac{1}{16}-\frac{1}{21}\)
...
\(\frac{5}{61.66}=\frac{66-61}{61.66}=\frac{66}{61.66}-\frac{61}{61.66}=\frac{1}{61}-\frac{1}{66}\)
= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=\(\frac{1}{11}-\frac{1}{66}\)=\(\frac{5}{66}\)