Cho góc xAy =45 độ và điểm nằm trong góc đó.Vẽ đường tròn tâm O bán kính OA cắt Ax tại B và Ay tại C. Đường tròn đường kính BC cắt Ã,Ay lần lượt tại M, N. C/M
a) O là trực tâm của tam giác AMN
b) MN=BC/căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M,N thuộc đường tròn đường kính BC=> Tam giác BMC và tam giác BNC vuông tại M,N
Mà \(\widehat{MAN}=45\Rightarrow\)Tam giác MAC và tam giác NAB vuông cân tại M,N
Khi đó: \(\hept{\begin{cases}OA=OC\\MA=MC\end{cases}\Rightarrow}\)OM là đường trung trực của AC \(\Rightarrow OM\perp AC\)
\(\hept{\begin{cases}OA=OB\\NA=NB\end{cases}\Rightarrow}\)ON là đường trung trực của AB \(\Rightarrow ON\perp AB\)
Vậy O là trực tâm tam giác ABC.
b) \(B,C\in\left(O,OA\right)\Rightarrow OB=OC\)
O thuộc đường tròn đường kính BC=> Tam giác OBC vuông cân tại O \(\Rightarrow\widehat{OBC}=45\)
Tam giác NBA vuông cân tại N \(\Rightarrow\widehat{NBA}=45\)
Vì \(\widehat{OBC}=\widehat{NBA}\) là các góc tại B chắn các cung nhỏ OC và MN của đường tròn đường kính BC \(\Rightarrow MN=OC=BCcos45=\frac{BC}{\sqrt{2}}\)
c) \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN.sin\widehat{MAN}}{\frac{1}{2}AB.AC.sin\widehat{BAC}}=\left(\frac{AM}{AC}\right)\left(\frac{AN}{AB}\right)=cos\widehat{MAN}.cos\widehat{BAC}=cos^245=\frac{1}{2}\)
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
Giải thích các bước giải:
MO là t.p.g. của AMBˆAMB^
⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450
⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân
=> OA = AM = MB = BO
=> OAMB là h.thoi có AMBˆ=900AMB^=900
=> OAMB là h.v.
b)
PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ
=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)
=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)
=MA+MB=MA+MB
=2OA=2OA
=2R=2R
c)
OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^
⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)
OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^
⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)
Cộng theo vế của (1) và (2), ta có:
COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^
⇒POQˆ=450
Giải thích các bước giải:
MO là t.p.g. của AMBˆAMB^
⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450
⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân
=> OA = AM = MB = BO
=> OAMB là h.thoi có AMBˆ=900AMB^=900
=> OAMB là h.v.
b)
PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ
=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)
=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)
=MA+MB=MA+MB
=2OA=2OA
=2R=2R
c)
OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^
⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)
OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^
⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)
Cộng theo vế của (1) và (2), ta có:
COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^
⇒POQˆ=450vv
a: góc OMA=1/2*sđ cung OA=90 độ
góc ONA=1/2*sđ cung OA=90 độ
Vì góc OMA=góc ONA=góc MAN=90 độ
nên AMON là hình chữ nhật
b: ΔOAB cân tại O
mà OM là đường cao
nên Mlà trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
Xet ΔACB có AM/AB=AN/AC
nên MN//BC