K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

a) Ta có: h(x) = 5x-7-(3x+1) = (5x-3x)-(7+1) = 2x-8

Vì 2x-8 = 0 nên x=4

Vậy nghiệm của đa thức h(x) là 4

b) Vì 2x-8 = 0 tại x = 4 nên 5x-7 = 3x+1 tại x = 4

 Vậy f(x)=g(x) tại x =4

20 tháng 4 2020

Bạn phải cho câu hỏi chứ , viết thế này ai hiểu nhonhung

20 tháng 4 2020

Câu hỏi đâu rồi bạn?

23 tháng 4 2019

Q(x)=-5x3 +4x-x2-5

b.x-2

c.x=-2

23 tháng 4 2019

a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)

\(=x+2\)

c. cho M(x)=0 \(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

vậy x=-2 là nghiệm của đa thức M(x)

tick mk với

18 tháng 12 2017

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2

Đa thức có bậc là 5

g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2

Đa thức có bậc là 8.

Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.



24 tháng 6 2021

a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)

\(=10x^3+x^2-8x+12\)

b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy tập nghiệm đa thức trên là S = { -2 ; 2 } 

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

C1:

\(f\left(x\right)=x^2+5x+7=x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-7\\ \Leftrightarrow f\left(x\right)=\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\)

ta thấy : \(\left(x+\dfrac{5}{2}\right)^2\ge0\)

và: \(-\dfrac{3}{4}< 0\)

\(\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\left(vô\:lí\right)\)

vậy đa thức đã cho vô nghiệm

C2:

ta thấy:\(\Delta=b^2-4ac=5^2-4.1.7=25-28=-3< 0\)

do đó đa thức đã cho vô nghiệm