Bài 1: Tính
C = 2^2 + 4^2 + 6^2 + 8^2 + ... + 100^2
Bài 2: Không tính giá trị cụ thể hãy so sánh
A = 2017^2 và B = 2014.2020
Các bạn giúp mình nhé, mình đang cần gấp ^^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(B=2014\cdot2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=2017^2-3^2\)
\(B=2017^2-9< A=2017^2\)
Vậy \(B< A\)
\(B=2014.2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=\left(2017-3\right).2017+\left(2017+3\right).3\)
\(B=2017^2-3.2017+2017.3+3^2\)
\(B=2017^2-3^2< 2017^2=A\)
Vậy A > B
_Hok tốt_
!!!
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
tinh tong cua 11,10,9,8,7,6,5,..........,-37,-38
-675 nha ban
\(\left(a-b\right)^2=a^2+b^2-2ab\\ \Rightarrow49=a^2+b^2-120\Rightarrow a^2+b^2=169\)
\(\left(a+b\right)^2=a^2+b^2+2ab=169+120=289\\ \Rightarrow a+b=17\)
\(a^2-b^2=\left(a-b\right)\left(a+b\right)=7\cdot17=119\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=169^2-2\cdot60^2\\ =28561-7200=21361\)
\(2\left(x^2+y^2\right)=\left(x-y\right)^2\\ \Rightarrow2x^2+2y^2=x^2-2xy+y^2\\ \Rightarrow x^2+2xy+y^2=0\\ \Rightarrow\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow x=-y\)
2.A>B
2017*2017>2014*2020