chứng tỏ rằng
giá trị biểu thức A = 5 + \(5^2+5^3+....+5^8\) chia hết cho 30
giá trị của biểu thức B = \(3+3^3+3^5+3^7+....+3^{29}\)chia hết cho 273
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
a) A = 5 + 52 + 53 + ... + 58
\(\Rightarrow\) 2A = 52 + 53 + 54 + ... + 59
\(\Rightarrow\) 2A - A = (52 + 53 + 54 + ... + 59) - (5 + 52 + 53 + ... + 58)
\(\Rightarrow\) A = 59 - 5 = 1 953 125 - 5 = 1 953 120
Vì 1 953 120 \(⋮\) 30 nên A \(⋮\) 30
\(\Rightarrow\) ĐPCT
a) \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)
\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.
b) \(B=3+3^3+3^5+3^7+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)
\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273