K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

KQ:\(\frac{1}{5}\)

14 tháng 3 2019

cho tớ xin cách lm

19 tháng 6 2019

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

19 tháng 6 2019

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.

8 tháng 1 2017

\(\frac{a.nh.y.e.u}{e.m}\)

2 tháng 1 2017

em yêu anh chứ gì

a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)

\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)

\(=4x\cdot2y=8xy\)

b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

4 tháng 9 2021

Câu A) là \(\left(2x+y\right)^2-\left(y-2x\right)^2\)

Chứ ko phải là\(\left(2x+y\right)^2-\left(2x-y\right)^2\)

Nhưng dù sao thì cũng cảm ơn

2 tháng 10 2020

MTC: (x+y)(x+1)(1-y)

\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)

\(=x-y+xy\)

Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định

31 tháng 3 2020

\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

1 tháng 4 2020

ĐKXD: x\(\ne\)-1,-2,-3

Ta có

\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

Chúc bạn học tốt

6 tháng 11 2015

bài này có phải là " Biểu thức tình yêu " không ?

6 tháng 11 2015

Biểu thức hay đấy