(5x^4-3x^5+3x-1)/(x+1-x^2)
làm giúp mk ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{}/3x-5/-\frac{1}{7}=\frac{1}{3}\) b)\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(/3x-5/=\frac{10}{21}\) \([x.\left(\frac{3}{5}-\frac{2}{3}-1\right)]=\frac{-5}{21}.7\)
\(\Rightarrow3x-5=\frac{10}{21}hay3x-5=\frac{-10}{21}\) \(\left[x.\frac{-16}{15}\right]=\frac{-5}{3}\)
\(3x=\frac{115}{21}\) \(3x=\frac{95}{21}\) \(x=\frac{25}{16}\)
\(x=\frac{115}{63}\) \(x=\frac{95}{63}\) Vậy x = \(\frac{25}{16}\)
Vậy x \(\in\left\{\frac{115}{63};\frac{95}{63}\right\}\)
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
\(\dfrac{3}{5}\) x 0,25\(x\) = - \(\dfrac{1}{2}\)
0,25\(x\) = - \(\dfrac{1}{2}\) : \(\dfrac{3}{5}\)
0,25\(x\) = - \(\dfrac{1}{2}\) x \(\dfrac{5}{3}\)
0,25\(x\) = - \(\dfrac{5}{6}\)
\(x\) = - \(\dfrac{5}{6}\) : 0,25
\(x\) = - \(\dfrac{5}{6}\) x 4
\(x\) = - \(\dfrac{10}{3}\)
Vậy \(x\) = - \(\dfrac{10}{3}\)
2626 : (\(\dfrac{1}{2}\)\(x\) + \(\dfrac{5}{2}\)\(x\)) = 26
\(\dfrac{1}{2}\)\(x\) + \(\dfrac{5}{2}\)\(x\) = 2626 : 26
\(\dfrac{1}{2}\)\(x\) + \(\dfrac{5}{2}\)\(x\) = 101
\(x\) x ( \(\dfrac{1}{2}\) + \(\dfrac{5}{2}\)) = 101
\(x\) x 3 = 101
\(x\) = 101 : 3
\(x\) = \(\dfrac{101}{3}\)
Vậy \(x\) = \(\dfrac{101}{3}\)
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0
<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0
<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4
<=> x = -4
=> x = -4
2) xem lại đề rồi chúng mình nói chuyện cậu nha :))
3) tương tự (mình hơi lười, thông cảm :v)
3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4
<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42
2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0
12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0
- 21x = -12
x = 4/7
1, đã có người giải
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
= 3x^2-2x+2
k mình nha