Cho x, y là các số thực không âm thỏa mãn x+y=1
Chứng minh 1/căn 2<= x căn x+y căn y<= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(A^2=\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le2\left(x+1+y+2\right)=36\)
\(\Rightarrow A\le6\)
\(A_{max}=6\) khi \(\left\{{}\begin{matrix}x=8\\y=7\end{matrix}\right.\)