Tìm x E N sao cho
10 chia hết cho (x-2)
5 chia hết cho (x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+20⋮10\Leftrightarrow x⋮10\) (vì \(20⋮10\)) (1)
\(x-15⋮5\Leftrightarrow x⋮5\) (vì \(15⋮5\)) (2)
Từ (1), (2) và \(x⋮8\) \(\Rightarrow x⋮10;5;8\Rightarrow x⋮40\Leftrightarrow x-80⋮40\) (vì \(80⋮40\)) (3)
\(x+1⋮9\Leftrightarrow x+1-81⋮9\) (vì \(81⋮9\)) \(\Leftrightarrow x-80⋮9\) (4)
Từ (3) vào (4) \(\Rightarrow x-80⋮40;9\Rightarrow x-80⋮360\)
Lại có: x < 300 nên x - 80 < 220. Mà x là số tự nhiên nên x - 80 = 0 \(\Rightarrow x=80\)
28=22.7 ; 35=5.7
=> BCNN(28;35)=22.5.7=140
B(140)={0;140;280;420;560;700;...}
=> B={0;140;280;420}
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
1)
a) \(x+10⋮5\)
\(\Rightarrow x+10\in U\left(5\right)=\left\{1;5\right\}\)
+)\(x+10=5\Rightarrow x=-5\)
+)\(x+10=1\Rightarrow x=-9\)
Vậy x=-5 ; x=-9
b) \(x-18⋮6\)
\(\Rightarrow x-18\in U\left(6\right)=\left\{1;2;3;6\right\}\)
+)\(x-18=1\Rightarrow x=19\)
+)\(x-18=2\Rightarrow x=20\)
+)\(x-18=3\Rightarrow x=21\)
+)\(x-18=6\Rightarrow x=24\)
Vậy x=19 ; x=20 ; x=21 ; x=24
có ai ko ,giúp mình 2 bài này với ,mai cô mình kiểm tra .huhu
a) x thuộc Z => x+1 thuộc Z
=> x+1 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
b) c) làm tương tự
d) Ta có x+3=x+3+11
=> 11 chia hết cho x+3
=> x+3 \(\inƯ\left(11\right)=\left\{-11;-11;1;11\right\}\)
Ta có bảng
x+3 | -11 | -1 | 1 | 11 |
x | -14 | -4 | -2 | 8 |
e)f) làm tương tự
g) Ta có 2x+1=2(x-2)+5
=> 5 chia hết cho x-2
=> x-2 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
a, Ta có 7 chia hết cho x+1
Do đó : x+1 thuộc Ư{7}
Mà x thuộc Z
Ta có bảng:
x+1 | 1 | 7 | -1 | -7 |
x | 0 | 6 | -2 | -8 |
Chỗ này bn thêm thoả mãn điều kiện nhé
Vậy...
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)