K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Đặt 11......1 (n chữ số 1 ) =a ( a thuộc N )

=> 2222.....2(n chữ số 2) =2a

100....0(n chữ số 0) = 9a+1

=> 1111....1(2n chữ số 1) = a.(9a+1)+a

Khi đó : A = a.(9a+1)+a-2a = 9a^2+a+a-2a=9a^2 = (3a)^2 là số chính phương)

=> ĐPCM

Mình không hiểu luôn ak !!!!@@@

a)a=111...111-222...222

=1111...111-2*111...111(số bị trừ có 2n chữ số 1,số trừ có n chữ số 1)

=111...111*100..01-2*1111...111(số bị trừ có n chữ số 1 và số trừ cũng thế)

=111...111(100...01-2)

=111...111*999...99 ( n chữ số 1,n chữ số 9)

=(111...11*3)*333...33

=333...333*333...333(cả 2 thừa số đều có n chữ số 3)

  • Mình chỉ biết làm câu a mà thôi.Thông cảm giúp mình nhé)
19 tháng 12 2016

xin lỗi mik cũng lớp 6 nhưng chưa làm dạng này

6 tháng 8 2018

A = 111...1000...0 + 111...1 - 222...2

     (n cs 1)(n cs 0)   (n cs 1)  (n cs 2)

\(A=111...1\cdot10^n+111...1-222...2\)

        (n cs 1)                       ( n cs 1 )      ( n cs 2 )

Đặt   K = 111...1  ( n cs 1 )   => 9K + 1 = 10^n

=> A = K( 9k + 1 ) + K - 2K

        = 9K^2 + K + K - 2K

        = 9K^2   = (3K)^2     

=> A là một số chính phương

B = 111...1000...0 + 111...1 +  444...4 + 1

    (n cs 1)(n cs 0)   (n cs 1)    (n cs 4)

\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)

                ( n cs 1 )                 ( n cs 1 )         ( n cs 4 )

Đặt   K = 111...1   ( n cs 1 )         => 9K + 1 = 10^n

=> B = K( 9K + 1 ) + K + 4K + 1

         = 9K^2 + 6K + 1

         = ( 3K + 1 ) ^2

=> B là một số chính phương

29 tháng 6 2017

Đặt 111...1 ( n chữ số) = x, ta có:

b = 222...2 ( n chữ số) = 2x.

a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)

Ta có:

\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)

\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)

Vật a-b là một số chính phương

11 tháng 8 2020

a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)

b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)

a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)

\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương

=> đpcm

11 tháng 8 2020

Ta có :

b = 22222...22222 ( n chữ số 2 ) = 2m

a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )

\(=\left(9m+1\right)m+m=9m^2+2m\) 

Lấy vế a trừ vế b ta được  \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP 

=> Đpcm