Cho tam giác ABC vuông tại A.I là một điểm nằm trong tam giác ABC.Chứng minh tam giác BIC tù
Các bạn giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\)có :
\(\hept{\begin{cases}\widehat{A}=\widehat{B_{12}}+\widehat{C_{12}}=90^{\text{O}}\\2.\widehat{B}_2=\widehat{B_{12}}\\2.\widehat{C_2}=\widehat{C_{12}}\end{cases}}\Rightarrow2.\widehat{B_2}+2.\widehat{C_2}=90^{\text{O}}\)
=> \(2.\left(\widehat{B_2}+\widehat{C_2}\right)=90^{\text{O}}\Rightarrow\widehat{B_2}+\widehat{C_2}=45^{\text{O}}\)
Xét \(\Delta BIC\)có :
\(\widehat{B_2}+\widehat{C_2}+\widehat{I}=180^{\text{O}}\Rightarrow45^{\text{O}}+\widehat{I}=180^{\text{O}}\Rightarrow\widehat{I}=135^{\text{O}}\)
=> \(\widehat{BIC}=\widehat{I} =135^{\text{O}}\)
hình vẽ ko đep you thông cảm nhá
xét 2 tam giác: MAC và NAB, có:
AC = AB ( tam giác ABC cân tại A)
A là góc chung
AM = AN ( vì tam giác ABC cân tại A => AB = AC, mà M và N là trung điểm của AB và AC => AM = AN)
vậy tam giác MAC = tam giác NAB ( c-g-c)
=> CM = BN ( 2 góc tương ứng) (điều phải chứng minh)
1 đúng nhé
you tự vẽ hình nha
xét tam giác: ABN và ACM, ta có:
AB = AC ( vì tam giác ABC cân tại A)
A là góc chung
vì tam giác ABC cân tại A nên AB = AC, mà M, N đều là trung điểm của AB và AC nên MA = NA
vậy tam giác ABN = tam giác ACM ( c-g-c)
BN = CM ( 2 cạnh tương ứng) ( điều phải chứng minh )
1 đúng nhé
Mình nghĩ đề bài có sai sót: BIC=ABI+ACI+BAC bạn ạ
Hình bạn tự vẽ nhé:
Giải: Nối A với I, kéo dài AI cắt BC tại D
Ta có: BID là góc ngoài của tam giác AIB tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> BID=BAI+ABI (1)
DIC là góc ngoài của tam giác AIC tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> DIC=ACI+IAC (2)
Từ (1) và (2) => BID+DIC=BAI+ABI+ACI+IAC
=> BIC=ABI+ACI+BAC (điều phải chứng minh)
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
c: G là trọng tâm
=>BG=2/3BM=2/3*1/2*BD=1/3*BD
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Ta có: ABC + ABD = 180o (2 góc kề bù)
và ACB + ACE = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABD = ACE
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE (gt)
=> △ABD = △ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> △ADE cân tại A
b, Xét △HBD vuông tại H và △KCE vuông tại K
Có: BD = CE (gt)
HDB = KEC (△ABD = △ACE)
=> △HBD = △KCE (ch-gn)
=> HBD = KCE (2 góc tương ứng)
Mà HBD = CBI (2 góc đối đỉnh) và KCE = BCI (2 góc đối đỉnh)
=> CBI = BCI
=> △BIC cân tại I
c, Xét △ABI và △ACI
Có: AB = AC (cmt)
BI = CI (△BIC cân tại I)
AI là cạnh chung
=>△ABI = △ACI (c.c.c)
=> BIA = CIA (2 góc tương ứng)
Mà IA nằm giữa IB, IC
=> IA là tia phân giác của góc BIC