K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

a) Xét phương trình hoành độ giao điểm (d) và (P)

           \(x^2 = 2(m+1)x - 4\)

     \(<=> x^2 -2(m+1) + 4 = 0\) (1)

có \(\Delta' = [-(m+1)]^2 -4\)

\(\Delta' = (m+1)^2- 4\)

(d) và (P) cắt nhau tại hai điểm phân biệt

<=> Phương trình (1) có hai nghiệm phân biệt

<=> \(\Delta' \)> 0

<=> \((m + 1)^2 - 4 >0\)

<=> \((m+1)^2 >4\)

<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)

\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)

b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)

nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x= 2(m+1)

                                        x1x= 4

Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x\(\geq \) 0)

=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)

<=> x1 - 2x1x2 + x2 = 4

<=> (x+ x2) - 2x1x2=4

<=> 2(m+1) - 2.4 = 4

<=> 2m + 2 - 8 = 4

<=> 2m = 10

<=> m = 5 (T/m)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Đoạn \((\sqrt{x_1}-\sqrt{x_2})^2=4\)

\(\Rightarrow x_1-2\sqrt{x_1x_2}+x_2=4\) chứ bạn.

NV
24 tháng 2 2021

Pt hoành độ giao điểm:

\(x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)

\(\Leftrightarrow x_1+x_2=0\)

\(\Rightarrow m=0\)

a) Phương trình hoành độ giao điểm: 

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m-2\ne0\)

hay \(m\ne2\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)

a: PTHĐGĐ là:

x^2-4x+4m^2+1=0

Δ=(-4)^2-4(4m^2+1)

=16-16m^2-4=-16m^2+12

Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0

=>-16m^2>-12

=>m^2<3/4

=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)

b: x1,x2 nguyên

=>x1+x2 nguyên và x2*x1 nguyên

=>4 nguyên và 4m^2+1 nguyên

=>4m^2 nguyên

=>m^2 nguyên

=>\(m=k^2\left(k\in Z\right)\)

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

19 tháng 3 2022

a, Hoành độ giao điểm tm pt 

\(x^2-\left(m+4\right)x+4m=0\)

\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)

Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4 

b, Thay m = -2 vào ta được 

\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)

Với x = 4 => y = 16 ; x = -2 => y = 4 

Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4) 

19 tháng 3 2022

cho e hỏi là a tính kiểu gì ra (x - 4) (x +2) vậy ạ