Chứng minh rằng 28n+18 và 8n+5 là hai số nguyên tố cùng nhau.(n ϵ N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Gọi d là ƯCLN (8n + 7, 6n + 5 )
\(8n+7⋮d\Rightarrow3\left(8n+7\right)⋮d\Rightarrow24n+21⋮d\)
\(6n+5⋮d\Rightarrow4\left(6n+5\right)⋮d\Rightarrow24n+20⋮d\)
\(\left[\left(24n+21\right)-\left(24n+20\right)\right]⋮d\)
\(\left[24n+21-24n-20\right]⋮d\)
\(1⋮d\Rightarrow d=1\)
Vậy 8n + 7 và 6n + 5 là 2 số nguyên tố cùng nhau
PP/ss: Hoq chắc
2 số nguyên tố cùng nhau có ước chung lớn nhất là 1.
Gọi \(d=UCLN\left(n+4,2n+7\right)\)
Khi đó \(\left\{{}\begin{matrix}n+4⋮d\\2n+7⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+8⋮d\\2n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+8\right)-\left(2n+7\right)⋮d\)
\(\Rightarrow1⋮d\) hay \(d=1\) (dpcm)
Gọi ƯCLN(6n + 7 ; 8n + 9) = d
=> \(\hept{\begin{cases}6n+7⋮d\\8n+9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(6n+7\right)⋮d\\3\left(8n+9\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+28⋮d\\24n+27⋮d\end{cases}}\)
=> \(\left(24n+28\right)-\left(24n+27\right)⋮d\)
=> \(1⋮d\)
=> d = 1
=> 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau
Vì 2n+3 là số lẻ
và 8n+10 là số chẵn
nên 2n+3 và 8n+10 là hai số nguyên tố cùng nhau
Gọi ƯCLN của 6n+4 và 8n+5 là d ( d thuộc N sao )
=> 6n+4 và 8n+5 đều chia hết cho d
=> 4.(6n+4) và 3.(8n+5) đều chia hết cho d
=> 24n+16 và 24n+15 chia hết cho d
=> 24n+16-(24n+15) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 6n+4 và 8n+5 là 1
=> 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha
Phai chung minh 6n+4va8n+5 co uoc chung la. 1
(6n+4;8n+5)=(6n+4;2n+1)=(4n+3;2n+1)=(2n+2;2n+1)=1
Vay 6n+4 va 8n+5 la hai so nguyen to cung nhau
Gọi BCNN (28n+18 và 8n+5) là d (d 𝛜N*)
Vì (28n+18) chia hết cho d
→ (56n+36)chia hết cho d
(8n+5) chia hết cho d
→ (56n+35)chia hết chod
→ (56n+36) - (56n+35) chia hết cho d
→ 56n+36 – 56n-35 chia hết cho d
→ 1 chia hết cho d, mà d ϵ N*
→ d=1
BCNN28n+18;8n+5=1
Vậy 28n+18 và 8n+5 là hai số nguyên tố cùng nhau.