Một số tự nhiên chia 4 ( dư 3 ) , chia ( dư 9 ) , chia 19 ( dư 13 ) . Hỏi số đó chia cho số 1292 thì dư bao nhiêu ?
Giúp mk nhé !!! Ai nhanh nhất mk tick cho !!! Viết rõ ra cho mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi số cần tìm là A(A thuộc N)
Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.
=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)
Số dư của A khi chia cho 1292 là:
1292 - 8 = 1284
Vậy A chia 1292 dư 1284.
2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.
Xét tổng:
4(2a - 3b) - (8a - b)
= 8a - 12b - 8a + b
= (12b + b) - (8a - 8a)
= 13b chia hết cho 13.
Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)
4.17.19=1292
Số dư là:3.9.13=351
Nhưng mk ko chắc cho lắm
gọi số tự nhiên là a , ta có :
A = 4a + 3
= 17b + 9
= 19c + 3
Mặt khác A + 25 = 4a + 3 + 25 = 4a + 28 = 4( a + 7 )
= 17b + 9 + 25 = 17b + 34 = 17 ( b + 2 )
= 19c + 13 + 25 = 19c + 38 = 19( c + 3 )
Như vậy A + 25 đồng thời chia hết cho 4 ; 17 ; 19
mà ( 4 : 17 : 19 ) = 1
=> A + 25 chia hết cho 1292
=> A + 25 = 1292k ( k = 1 ; 2 ; 3 ; ......... )
=> A = 1292k - 25 = 1292k - 1292 + 1267 = 1292 ( k -1 ) + 1267
Do 1267 < 1292 nên 1267 là số trong phép chia số đã cho A là 1292
Gọi số cần tìm là A . Theo bài ra ta có :
\(A=4q_1\)\(+3\)
\(A=17q_2\)\(+9\)
\(A=19q_3\)\(+13\left(q_1,q_2,q_3\in N\right)\)
\(\rightarrow A+25=4\left(q_1+7\right)=17I\left(q_2+2\right)=19\left(q_3+2\right)\)
\(\rightarrow A+25\)chia hết cho 4 ; 17 ; 19 mà ( 4 ; 17 ; 19 ) = 1 ( A + 25 ) chia hết cho tích ( 4 . 17 . 19 ) hay A + 25 = 1292k ( K thuộc N )
\(\rightarrow\)A = 1292k - 25 = 1292k - 1292k + 1267 = 1292 ( k - 1 ) + 1267
Vậy khi chia A cho 1292 thì dư 1267.
gọi A là số cần tìm ta có:
A = 4q1+3
A = 17q2+9
A = 19q3+13 (q1, q2, q3 ∈ N)
→ A + 25 = 4 (q1 + 7) = 17I (q2 + 2)
= 19 (q3 + 2)
⇒ A+ 25 chia hết cho 4;17;19 mà (4;17;19) =1(A+25) chia hết cho tích(4;17;19) hay A+25=1292K(k thuộc N)
⇒ A=1292K-25=1292k-1292K+1267= 1292(K-1)+1267
vậy khi chia A cho 1292 thì dư 1267