a) 2n+5 chia het cho 3n+2
b) 4n+5 chia hết cho 2n-1
tìm số tự nhiên n thỏa mãn:
a) 18n+3 chia hết cho 7 b) 4n-5 chia hết cho 13 c) 25n+3 chia hết cho 53
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 4n-5=4n-2+3
Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ư(3)={1;3;-1;-3}
=>n={2;4;0;-2}
Do n thuộc N nên n={2;4;0}
các câu còn lại tương tự
tick nha
a) 4n-5=4n+8-13=4(n+2)-13 chia hết cho 13 khi và chỉ khi n+2 chia hết cho 13. Điều này có nghĩa là n=13k-2.
b) 5n+1=5n-20+21=5(n-4)+21 chia hết cho 7 khi và chỉ khi n-4 chia hết cho 7. Điều này có nghĩa là n=7k+4
c) 25n+3=25n-50+53=25(n-2)+53 chia hết cho 53 khi và chỉ khi n-2 chia hết cho 53. Điều này có nghĩa là n=53k+2
Ta có : 4n - 5 chia hết cho 13
=> 13 thuộc Ư(13) = {1;13}
Ta có bảng
4n - 5 | 1 | 13 |
4n | 6 | 18 |
n | 3/2 | 9/2 |
Vậy n ko tồn tại
Vì 4n-5 chia hết 13
=> 4n-5 thuộc B(13) = {13,26,39,...}
Với 4n-5 = 13 => 4n = 18 => n = 9/2 (loại vì n thuộc N)
với 4n-5 = 26 => 4n = 31 => n= 31/4 (loại)
Với 4n-5 = 39 => 4n = 44 => n=11 (t/m)
........
Vậy n = 11
các bạn cố gắng giúp mình nha