Cho \(\frac{a}{b}\)= \(\frac{c}{d}\), chứng minh \(\frac{5\cdot a+3\cdot b}{5\cdot a-3\cdot b}\)= \(\frac{5\cdot c+3\cdot d}{5\cdot c-3\cdot d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-14ad+14bc=39ad-39bc\)
\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)
=>ad-bc=0
=>ad=bc
hay a/b=c/d
Lời giải:
$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$
$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$
$\Rightarrow 3a-2b=2c-5a=5b-3c=0$
$\Rightarrow 3a=2b; 2c=5a$
$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$
$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)
Thay (1) vào ta có :
\(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k-3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(2)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(3)
Từ (2) và (3)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
\(\RightarrowĐPCM\)
ta có:a/b=c/d suy ra a/c=b/d suy ra 5a/5c=3b/3d
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/c=b/d=5a/5c=3b/3d=5a+3b/5c+3d=5a-3b=5c-3d
Suy ra ĐPCM