tìm số tự nhiên n biết rằng 2n + 3 chia hết cho n - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
\(6n+7⋮2n-1\Leftrightarrow6n-3+10=3\left(2n-1\right)+10⋮2n-1\)
Hay \(10⋮2n-1\)
Do đó 2n-1 là ước của 10
Do 2n-1 lẻ nên 2n-1 là ước lẻ của 10, do đó 2n*1 có các giá trị là 1 và 5
Từ đó tính được n=1 và n=3
\(7+6n⋮2n-1\Leftrightarrow6n-3+10⋮\left(2n-1\right)\)
\(\Leftrightarrow3.\left(2n-1\right)+10⋮\left(2n-1\right)\)
\(\Leftrightarrow10⋮\left(2n-1\right)\) ( vì \(3.\left(2n-1\right)⋮\left(2n-1\right)\) )
\(\Leftrightarrow2n-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2n-1\right):2\) dư 1 và \(n\in N\) nên \(2n-1=\pm1;5\)
Với 2n - 1 có giá trị lần lượt bằng: -1;1;5 thì n có giá trị lần lượt bằng : 0;1;3
Vậy \(n=0;1;3\)
Ta có : 2n + 3 = ( 2n + 1 ) + 2 chia hết cho n-1
vì 2n+1 chia hết n-1 => 2 phải chia hết cho n-1
=> n thuộc Ư(2)
n thuộc Ư(2) = { 1 ; 2 }
vậy => n thuộc { 1 ; 2 Ư
bạn ơi ở cài phần cuối cùng mk ghi nhầm nha
sửa lại :
vậy n thuộc { 2 }