Tìm x,y biết:
x - y = 3 * [ x + y ] = x y = x / y [ y khác 0]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=x-y\Rightarrow2x=0\Rightarrow x=0\)
\(x+y=x.y\Rightarrow y=0\)
Ta có:
\(xy=x:y\Leftrightarrow xy=x.\dfrac{1}{y}\)
\(\Leftrightarrow xy-x.\dfrac{1}{y}=0\)
\(\Leftrightarrow x\left(y-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)
TH1: \(x=0\)
\(\Rightarrow x-y=xy=0\Leftrightarrow x=y=0\left(ktm\right)\)
TH2:\(y-\dfrac{1}{y}=0\Leftrightarrow\dfrac{y^2-1}{y}=0\)
\(\Leftrightarrow y^2-1=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Khi \(y=1\) thì \(x-1=x\)(không có \(x\) thoả mãn)
Khi \(y=-1\) thì \(x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)(tm)
Vậy \(x=-\dfrac{1}{2}\) và \(y=-1\)
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)
Vậy...
Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu
xy + 2x - 3y = 9
\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3
\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3
\(\Leftrightarrow\) (2 + y)(x - 3) = 3
Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:
x - 3 | 3 | 1 | -1 | -3 |
2 + y | 1 | 3 | -3 | -1 |
x | 6(TM) | 4(TM) | 2(TM) | 0(TM) |
y | -1(TM) | 1(TM) | -5(TM) | -3(TM) |
Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}
Chúc bn học tốt!
Ta có : `x/5=y/3` và `x-y=-2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`
`=>x/5=-1=>x=-1.5=-5`
`=>y/3=-1=>y=-1.3=-3`
Vậy `x=-5;y=-3`
Áp dụng tính chất của DTSBN, ta được:
x/5=y/3=(x-y)/(5-3)=-2/2=-1
=>x=-5; y=-3
\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)
\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy x = -1, y =0