số học sinh giỏi,khá,trung bình của khối 7 ở một trường tỉ lên với 2;3;5.Biết rằng số học sinh khá nhiều hơn số học sinh giỏi là 45 bạn.tính số học sinh mỗi loại và cả khối 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh giỏi , khá , trung bình của khối 7 lần lượt là a,b,c ( a,b,c thuộc N* )
Theo đề bài ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(b-a=45\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b-a}{3-2}=\frac{45}{1}=45\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=45\Rightarrow a=90\\\frac{b}{3}=45\Rightarrow b=135\\\frac{c}{5}=45\Rightarrow c=225\end{cases}}\)
Vậy..............
Gọi số h/s giỏi,khá, tb của khối 7 lần lượt là:a,b.c (h/s) (a,b,c>0)
Theo bài ra ta có:a/2=b/3=c/5 và b+c-a=180(em)
Áp dụng t/c của day tỉ số bằng nhau ta có:
a/2=b/3=c/5=b+c-a=30
=>a=2*30=60
b=3*30=90
c=5*30=150
Vậy số h/s giỏi,khá tb của khối 7 lần lượt là: 60em,90em,150em
bạn k cho minh nhé
Gọi số học sinh mỗi loại của khối 7 lần lượt là x,y,z( h/s, đk : x,y,z ∈ N*)
--> x/ 4= y/5=z/7 và x+y+z= 336
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/4=y/5=z/7 = x+y+z/4+5+7 = 336/16 = 21
Từ đó:
+, x/4 = 21--> x= 21.4= 84
+, y/5= 21--> y= 21.5= 105
+, z/7=21-->21.7= 147
Vậy số học sinh mỗi loại của khối 7 lần lượt là 84; 105; 147 ( h/s)
Gọi số hs giỏi, khá, trung bình ll là a,b,c(hs;a,b,c∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{4+5+7}=\dfrac{336}{16}=21\\ \Rightarrow\left\{{}\begin{matrix}a=84\\b=105\\c=147\end{matrix}\right.\)
Vậy ...
Gọi số học sinh giỏi - khá - trung bình lần lượt là \(a,b,c\left(a,b,c>0\right)\)
Áp dụng TCDTSBN:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{4+5+7}=\dfrac{336}{16}=21\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\cdot21=84\left(hs\right)\\b=5\cdot21=105\left(hs\right)\\c=7\cdot21=147\left(hs\right)\end{matrix}\right.\)
Gọi số học sinh mỗi loại của khối 7 lần lượt là x,y,z( h/s, đk : x,y,z ∈ N*)
--> x/ 4= y/5=z/7 và x+y+z= 336
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/4=y/5=z/7 = x+y+z/4+5+7 = 336/16 = 21
Từ đó:
+, x/4 = 21--> x= 21.4= 84
+, y/5= 21--> y= 21.5= 105
+, z/7=21-->21.7= 147
Vậy số học sinh mỗi loại của khối 7 lần lượt là 8
Gọi a, b, c (hs) lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a, b, c c N*)
Vì số học sinh giỏi, khá, TB của khối 7 tỉ lệ thuận với các số 2, 5, 6
=> \(\frac{a}{2}=\frac{b}{5}=\frac{c}{6}\)và a + b - c = 45.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{2+5-6}=\frac{45}{1}=45\)
=> \(\frac{a}{2}=45\)=> a = 45.2 = 90
và \(\frac{b}{5}=45\)=> b = 45.5 = 225
và \(\frac{c}{6}=45\)=> c = 45.6 = 270
Vậy khối 7 có 90 học sinh giỏi, 225 học sinh khá, 270 học sinh TB.
Gọi số học sinh giỏi, khá, trung bình lần lượt là:a,b,c nên ta có:
a/2=b/5=c/6 và lại có a+b-c=45(em)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2=b/5=c/6 và a+b-c=45
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{2+5-6}=\frac{45}{1}=45\)
=> a=45.2=90
b=5.45=225
c=6.45=270
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b+c-a}{3+4-2}=\dfrac{120}{5}=24\)
Do đó: a=48; b=72; c=96
Gọi a,b,c lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a,b,c ∈ N*)
Theo đề bài, ta có :
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và b+c-a = 120(em)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{2}\) =\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=\(\dfrac{b+c-a}{3+4_{ }-2}\)=\(\dfrac{120}{5}\)=24
Từ\(\dfrac{a}{2}\)= 24 => a = 24.2 = 48
Từ \(\dfrac{b}{3}\)= 24 => b = 24.3 = 72
Từ\(\dfrac{c}{4}\)= 24 => c = 24.4 = 96
Vậy số học sinh giỏi là : 48 em
học sinh khá là : 72 em
học sinh trung bình là : 96 em
Lời giải:
Gọi số hs giỏi, khá, trung bình lần lượt là $a,b,c$
Theo bài ra ta có:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
$b+c-a=180$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30$
$\Rightarrow a=2.30=60; b=3.30=90; c=5.30=150$
Vậy số hsg là $60$ em.
HS giỏi là 90 hs.
HS khá là 135 hs.
HS TB là 225 hs.
HS khối 7 là 450hs.