Cho tam giác ABC cân tại A , trung tuyến AM ,F là trung điểm AC,E là trung điểm AB ,O là trung điểm AM . a) C/m tứ giác AEMF là hình thoi b) Gọi N giao điểm đối xứng Của M qua E tứ giác AMBN ,BEFC là hình gì Vì sao? C) c/m O là trung điểm NC d) Tìm đk của tam giác ABC để tứ giác AEMF là hình vuông?
a) Do tam giác ABC cân tại A có AM là trung tuyến nên AM là đường cao.
Xét tam giác vuông ABM có ME là trung tuyến ứng với cạnh huyền nên \(EA=EM\)
Tương tự FM = FA
Lại có tam giác ABC cân tại A nên AB = AC hay AE = AF. Suy ra AE = EM = MF = FA hay AEMF là hình thoi.
b) Xét tứ giác AMBN có EA = EB; EM = EN nên AMBN là hình bình hành.
Lại có \(\widehat{AMB}=90^o\Rightarrow\) AMBN là hình chữ nhật.
Xét tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình của tam giác.
Hay EF // BC
Vậy BEFC là hình thang. Lại có \(\widehat{EBC}=\widehat{FCB}\) nên BEFC là hình thang cân.
c) Do AMBN là hình chữ nhật nên NA song song và bằng BM. Suy ra NA cũng song song và bằng MC.
Xét tam giác ANMC có AN song song và bằng MC nên NACM là hình bình hành.
Vậy AM và NC cắt nhau tại trung điểm mỗi đường. Do O là trung điểm AM nên O là trung điểm NC.
d) Tứ giác AEMF là hình thoi. Để nó là hình vuông thì \(\widehat{EAF}=90^o\) hay tam giác ABC vuông cân tại A.