Tìm các số tự nhiên a , b biết
a + 2.b = 48 và ước chung lớn nhất ( a ,b ) + bội chung nhỏ nhất ( a ,b ) = 114
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
Ta có:ƯCLN(a,b).BCNN(a,b)=a.b
ha:12.240=a.b=2880
ƯCLN(a,b)=12
=>a=12.m;b=12.n(ƯCLN(m,n)=1)
mà:a.b=2880
=>12.m.12.n=2880
=144.(m.n)=2880
=>m.n=2880:144=20
Ta có bảng:(ƯCLN(m,n)=1)(a<b=>m<n)
m | n | a | b |
1 | 20 | 12 | 240 |
4 | 5 | 48 | 60 |
Vậy(a;b)=(12;240) hoặc (48;60)
\(ab=\left[a,b\right]\left(a,b\right)=300.15=450\)
\(\left(a,b\right)=15\)nên ta đặt \(a=15m,b=15n\)khi đó \(\left(m,n\right)=1\).
\(ab=15m.15n=225mn=4500\Leftrightarrow mn=20\)
Vì \(\left(m,n\right)=1\)nên ta có bảng giá trị:
m | 1 | 4 | 5 | 20 |
n | 20 | 5 | 4 | 1 |
a | 15 | 60 | 75 | 300 |
b | 300 | 75 | 60 | 15 |
Ta có: UCLN(a;b) = 15 => a = 15m và b = 15n (Với m ; n khác 0)
Ta lại có: BCNN(a;b) = 300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).
Ta lại có : BCNN ( a ; b ) = 300
Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )
=> a . b = 300 . 15 = 4500 (*)
Thay a = 15m và b = 15n vào (*) ta được :
15m . 15n = 4500
<=> ( 15 . 15 ) mn = 4500
<=> 225mn = 4500
<=> mn = 4500 : 225
<=> mn = 20
Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20
=> Ta có bảng :
m | 4 | 5 | 1 | 20 |
n | 5 | 4 | 20 | 1 |
a | 60 | 75 | 15 | 300 |
b | 75 | 60 | 300 | 15 |
Ta có: \(ƯCLN\left(a,b\right)=15\Rightarrow a=15m\) và \(b=15n\)(Với \(m;n\ne0\))
Ta lại có: \(BCNN\left(a,b\right)=300\)
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có: ƯCLN(a,b)=15⇒a=15mƯCLN(a,b)=15⇒a=15m và b=15nb=15n(Với m;n≠0m;n≠0)
Ta lại có: BCNN(a,b)=300BCNN(a,b)=300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Do ƯCLN(a; b) = 15 => a = 15.m; b = 15.n (m;n)=1
=> BCNN(a; b) = 15.m.n = 300
=> m.n = 300 : 15 = 20
Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=20;n=1\\m=5;n=4\end{array}\right.\)
+ Với m = 20; n = 1 thì a = 20.15 = 300; b = 1.15 = 15
+ Với m = 5; n = 4 thì a = 5.15 = 75; b = 4.15 = 60
Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (300;15) ; (75;60) ; (60;75) ; (15;300)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt