đổi phương trình sau thành hệ phương trình và giải:
a) \(\sqrt{2x^2+5x+3}+x+3=0\)
b)\(\sqrt{2x^2+x+3}+x-1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Thuật toán:
B1: Nhập a,b,c
B2: Tính \(\Delta\) = b2-4ac;
B3: Kiểm tra nếu \(\Delta\) >0 phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}\text{ }}{2a}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
B4: Kiểm tra nếu \(\Delta\)<0 thì phương trình vô nghiệm
B5: Kiểm tra nếu \(\Delta\)=0 phương trình có 2 nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
Viết chương trình:
Program HOC24;
var a,b,c: integer;
x1,x2: real;
denta: longint;
begin
write('Nhap a; b; c: '); readln(a,b,c);
denta:=b*b-4*a*c;
if denta>0 then
begin
write('x1= ',(-b+sqrt(denta))/(2*a):1:2);
write('x2= ',(-b-sqrt(denta))/(2*a):1:2);
end;
if denta<0 then write('Phuong trinh vo nghiem');
if denta=0 then write('x= ',-b/2*a:1:2);
readln
end.
Bài 2:
Thuật toán:
B1: Nhập a,b
B2: Kiểm tra nếu a=0 và b=0 thì phương trình có vô số nghiệm
B3: Kiểm tra nếu a=0 thì phương trình vô nghiệm
B4: Kiểm tra nếu a khác 0 thì có nghiệm x=-b/a;
Viết chương trình:
Program HOC24;
var a,b: integer;
x: real;
begin
write('Nhap a; b: '); readln(a,b);
if a=0 and b=0 then write('Phuong trinh co vo so nghiem');
if a=0 then write('Phuong trinh vo nghiem');
if a<>0 then write('x=',-b/a:1:2);
readln
end.
Gọi số tờ tiền loại 200 ngàn đồng là x tờ (x>0)
Số tờ tiền loại 100 ngàn đồng là y tờ (y>0)
Do ba Lan đến được 36 tờ nên: \(x+y=36\)
Do tổng số tiền rút là 6 triệu đồng (\(=6000\) ngàn đồng) nên:
\(200x+100y=6000\Leftrightarrow2x+y=60\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=36\\2x+y=60\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
a.
\(\Leftrightarrow\sqrt{2x^2+5x+3}=-x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-3\ge0\\2x^2+5x+3=\left(-x-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\2x^2+5x+3=x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x^2-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm
b.
\(\Leftrightarrow\sqrt{2x^2+x+3}=1-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\2x^2+x+3=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\2x^2+x+3=1-2x+x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2+3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=-1\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm