Tìm số tự nhiên nhỏ nhất có 12 ước .GIẢI ra luôn nha m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
12=2^2.3
Ta thấy ; 3 số nguyên tố nhỏ nhất là : 2 , 3 , 5
=> A = 2^3-1 . 3^2-1 . 5^2-1= 4 . 3 . 5 = 60
Vậy số tự nhiên A nhỏ nhất có đúng 12 ước là số 60
12 = 3*2*2
3 là số nguyên tố nhỏ nhất
=> Vậy số cần tìm là : 23-1 * 32-1 *52-1=4*3*5=60
=> a = 60
Chú ý : * là dấu nhân
12=22*3
12*2=24=23*3
12*3=36=22*32
12*4=48=24*3
12*5=60=22*3*5
áp dụng công thức tính số mũ, ta chỉ thấy 60 là số tự nhiên nhỏ nhất có thể và có 12 ước
60 có: (2+1)*(1+1)*(1+1)=3*2*2=6*2=12(ước)
Vậy 60 là số cần tìm
Bài này là bài tủ của mình :
Gọi số cần tìm là A. (A là hợp số có 12 ước)
Đặt A = ax.by = cm.dn.ep (a, b, c, d, e \(\notin\) {0; 1} vì khi đó A sẽ không phải là hợp số)
Mà 12 = 1.12 = 2.6 = 3.4 = 2.2.3
=> Số ước của A có dạng (x + 1).(y + 1) = 1.12 = 2.6 = 3.4 hoặc (m + 1).(n + 1).(p + 1) = 2.2.3
Xét từng trường hợp:
TH1: Với (x + 1).(y + 1) = 1.12 suy ra x = 0 và y = 11 => A = a0.b11 = 1.b11 = b11
.Để A nhỏ nhất thì b = 2 , lúc đó A = 211 = 2048
TH2: Với (x + 1).(y + 1) = 2.6 suy ra x = 1 và y = 5 => A = a1.b5 = a.b5. Để A nhỏ nhất thì b = 2 và a = 3, lúc đó A = 31.25 = 96
TH3: Với (x + 1).(y + 1) = 3.4 suy ra x = 2 và y = 3 => A = a2.b3. Để A nhỏ nhất thì a = 2 và b = 3
, lúc đó A = 32.23 = 72
TH4 : Với (m + 1).(n + 1).(p + 1) = 2.2.3 suy ra m = 1; n = 1 và p = 2 => A = c2.d2.e3..Để A nhỏ nhất thì c = 2 ; a = 3 và b = 5 => A = 3.5.22 = 60
Trong các trường hợp trên, ta chọn A nhỏ nhất. Vậy A = 60
Số đó là 2^2.3^2 =36
Số a=a1^t1.a2^t2..an^tn (với a1 # a2 # ...#an là các số nguyên tố)
Công thức tính ước số: (t1+1)(t2+1)..(tn+1) =9 =1.9 =3.3
Nếu t1+1=3; t2+1 =3
=> t1=2, t2=2
=> a1, a2 là số nguyên tố nhỏ nhất mà a1 # a2 là 2 và 3
=> Số đó là 2^2.3^2
Nếu t1+1 =1; t2+1=9
=> số đó là 2^9 (loại)
===============================
Số 36 có 9 ước số là : 1, 2,3,4, 6, 9,12,18, 36
Giả sử n có phân tích ra thừa số nguyên tố \(n=p^{\alpha_1}_1p^{\alpha_2}_2....p^{\alpha_n}_n\) thì số ước của n là: \(\left(1+\alpha_1\right)\left(1+\alpha_2\right)...\left(1+\alpha_n\right)\).
Để số tự nhiên phải tìm là nhỏ nhất thì các số nguyên tố \(p_1,p_2,...,p_n\) được chọn phải nhỏ nhất.
Vậy số cần tìm phải có một ước nguyên tố \(p=2\).
\(12=2^2.3\). Suy ra \(\left(1+\alpha_1\right)\left(1+\alpha_2\right)...\left(1+\alpha_n\right)=12\) .Từ đó suy ra số mũ của \(p=2\)phải là 11, 2, 3, 5. ( Số mũ của p cộng 1 là ước của 12).
Nếu số mũ của 2 bằng 11. Suy ra \(n=2^{11}=2048\).
Nếu số mũ của 2 bằng 2, ta có hai trường hợp:
- Ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^2.3^3=108\).
- Ta chọn ước nguyên tố tiếp theo của n là 3 và 5 và \(n=2^2.3.5=60\).
Nếu số mũ của 2 bằng 3, ta có hai trường hợp:
-Ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^3.3^2=72\).
- Ta chọn hai ước nguyên tố tiếp theo của n là 3, 5 và \(n=2^3.3.5=120\).
Nếu số mũ của 2 bằng 5, ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^5.3=96\).
Vậy cố cần tìm là 60.