\(A=\frac{a^2+bc}{b+ac}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
\(=\frac{3\left(a^2+bc\right)}{\left(a+b+c\right)b+3ac}+\frac{3\left(b^2+ca\right)}{\left(a+b+c\right)c+3ab}+\frac{3\left(c^2+ab\right)}{\left(a+b+c\right)a+3bc}\)
\(\ge\frac{3\left(a^2+bc\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(b^2+ca\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(c^2+ab\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}=3\)