K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)

\(\Rightarrow r\) là số dư

Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)

\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)

Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)

28 tháng 10 2017

bài 2

 f(x) = (x²+x-1)^10 + (x²-x+1)^10 -2 
f(1) = 1 + 1 - 2 = 0

=> x = 1 là nghiệm cua f(x)

=> f(x) chia hết cho x-1 

NV
20 tháng 3 2022

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

24 tháng 3 2022

 Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ

 

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.

Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$

Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$

$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$

$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)

Do đó ta có đpcm.

3 tháng 3 2021

Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

\(\dfrac{G\left(x\right)}{P\left(x\right)}\)

\(=\dfrac{x^6-1+ax^2+bx+3}{x^2-x+1}\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)+\dfrac{ax^2-ax+a+\left(b+a\right)x+3-a}{x^2-x+1}\)

\(=A+\dfrac{\left(b+a\right)x+3-a}{x^2-x+1}\)

G(x) chia hêt cho P(x)=0

=>3-a=0 và a+b=0

=>a=3 và b=-3

 

29 tháng 3 2023

em chưa cho đa thức f(x) và g(x) nà

29 tháng 3 2023

e cho r