K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

\(a\text{) }pt\Leftrightarrow\left(m-2\right)x=m+1\)

\(+m-2=0\Leftrightarrow m=2\) thì pt trở thành 0 = 3 (vô lí) => pt vô nghiệm.

\(+m-2\ne0\Leftrightarrow m\ne2\) thì pt tương đương \(x=\frac{m+1}{m-2}\)

Vậy: 

+m = 0 thì pt vô nghiệm.

+m khác 0 thì pt có nghiệm duy nhất \(x=\frac{m+1}{m-2}\)

\(b\text{) }pt\Leftrightarrow\left(m^2-2\right)x=-4\)

\(+m^2-2=0\Leftrightarrow m=\sqrt{2}\text{ hoặc }m=-\sqrt{2}\) thì pt thành 0 = -4 (vô lí) => pt vọ nghiệm.

\(+m^2-2\ne0\Leftrightarrow m\ne\sqrt{2};-\sqrt{2}\)thì pt tương đương \(x=\frac{-4}{m^2-2}\)

Vậy: 

+m=√2 ; -√2 thì pt vô nghiệm.

+m khác √2; -√2, pt có nghiệm duy nhất \(x=-\frac{4}{m^2-2}\)

 

 

5 tháng 4 2018

a) \(m\left(x-1\right)=2x+1\)

\(\Leftrightarrow xm-m=2x+1\)

\(\Leftrightarrow xm-2x=m+1\)

\(\Leftrightarrow x\left(m-2\right)=m+1\) (*)

+) Nếu \(m-2\ne0\Leftrightarrow m\ne2\)

Phương trình có 1 nghiệm duy nhất  \(x=\frac{m+1}{m-2}\)

+) Nếu m = 2

(*) \(\Leftrightarrow0x=3\) ( vô lí )

Suy ra phương trình vô nghiệm

Vậy khi \(m\ne2\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)

       khi m = 2 thì phương trình vô nghiệm

b: =>x(m^2-2m)-m+x+1<0

=>x(m^2-2m+1)<m-1

=>x(m-1)^2<m-1

TH1: m=1

BPT sẽ là 0x<0(vô lý)

TH2: m<>1

BPT sẽ có nghiệm là x<1/(m-1)

a: =>x(m-1)-2x>-m-2+4

=>x(m-3)>-m+2

TH1: m=3

BPT sẽ là 0x>-3+2=-1(luôn đúng)

TH2: m<3

BPT sẽ có nghiệm là x<(-m+2)/(m-3)

TH3: m>3

BPT sẽ có nghiệm là x>(-m+2)/(m-3)

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

23 tháng 1 2022

Pt <=> 1 - x - 2mx = 0

<=> x(2m + 1) = 1

m = -1/2 --> vô nghiệm

m # -1/2 --> x = \(\dfrac{1}{2m+1}\)

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

30 tháng 12 2023

a: \(4x-2=m\left(mx-1\right)\)(1)

=>\(m^2x-m=4x-2\)

=>\(x\left(m^2-4\right)=m-2\)

=>x(m-2)(m+2)=m-2

TH1: m=2

Phương trình (1) sẽ trở thành \(x\left(2-2\right)\left(2+2\right)=2-2\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (1) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-2-2\)

=>0x=-4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (1) sẽ trở thành: \(x\left(m-2\right)\left(m+2\right)=m-2\)

=>x(m+2)=1

=>\(x=\dfrac{1}{m+2}\)

f: \(m^2x-3=4x-\left(m-1\right)\)(2)

=>\(m^2x-4x=-m+1+3\)

=>\(x\left(m^2-4\right)=-m+2\)

=>\(x\left(m-2\right)\left(m+2\right)=-\left(m-2\right)\)

TH1: m=2

Phương trình (2) sẽ trở thành: \(x\left(2-2\right)\left(2+2\right)=-\left(2-2\right)\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (2) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-\left(-2-2\right)\)

=>0x=4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (2) sẽ là: x(m-2)(m+2)=-(m-2)

=>x(m+2)=-1

=>\(x=-\dfrac{1}{m+2}\)

g: \(m^3x-4=m^2+4mx-4m\)(3)

=>\(m^3x-4mx=m^2-4m+4\)

=>\(x\left(m^3-4m\right)=\left(m-2\right)^2\)

=>\(x\cdot m\cdot\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

TH1: m=2

Phương trình (3) sẽ trở thành: \(x\cdot2\cdot\left(2+2\right)\left(2-2\right)=\left(2-2\right)^2\)

=>0x=0(luôn đúng)

TH2: m=0

Phương trình (3) sẽ trở thành:

\(x\cdot0\cdot\left(0+2\right)\left(0-2\right)=\left(0-2\right)^2\)

=>0x=4

=>\(x\in\varnothing\)

TH3: m=-2

Phương trình (3) sẽ trở thành;

\(x\cdot\left(-2\right)\left(-2+2\right)\left(-2-2\right)=\left(-2-2\right)^2\)

=>0x=16

=>\(x\in\varnothing\)

TH4: \(m\notin\left\{0;2;-2\right\}\)

Phương trình (3) sẽ trở thành:

\(x\cdot m\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

=>\(x=\dfrac{\left(m-2\right)^2}{m\left(m+2\right)\left(m-2\right)}=\dfrac{m-2}{m\left(m+2\right)}\)