Cho tam giác ABC vuông ở A đường cao AH biết AB=6cm AB =8cm
a tính BC BH CH AH góc B góc C
b gọi AD là đường phân giác của góc A D thuộc BC tính AD
(Làm tròn đến 1 chữ số thập phân và đến độ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{HBA}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Giải giùm đi