K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017
Tự làm đi bạn, dễ mà, bạn nào thấy dễ thì tk nha .
18 tháng 10 2017

điêu đấy phải là 8

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

21 tháng 12 2016

a ) 

Ta co S = ( 2 + 2+ 23 + 24 + 25 ) + ...... + (  296 + 297 + 298 +299 + 2100 )

= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )

= 2.31 + .....+ 296.31

= 31 ( 2 + ... + 296 ) chia het cho 31

b ) Goi d laf UC ( 3n+1 ; 4n+1 )

=> 3n + 1 ⋮ d va 4n + 1 ⋮ d

=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d

=> 12n + 4 ⋮ d và 12n + 3 ⋮ d

=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d

=> 1 ⋮ d => d = 1

Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau

c ) Xét x > 0

=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )

Xét x < 0 

=> |x| + x = - x + x = 0 ( tm)

Vậy x < 0

22 tháng 12 2016

Cảm ơn nhìu!

16 tháng 12 2020
. .
16 tháng 12 2020

as molie

27 tháng 4 2017

Tổng các số hạng của S là 99 số hạng.

a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:

S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)

=> S=2.7+24.7+...+297.7=7(2+24+297)

=> S chia hết cho 7

b/ 

27 tháng 4 2017

S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1

Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:

S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1

S=31.(1+25+...+295)-1

=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31

=> S không chia hết cho 31

3 tháng 1 2018

\(S=6+6^2+6^3+.......+6^{100}\)

\(=\left(6+6^2\right)+\left(6^3+6^4\right)+......+\left(6^{99}+6^{100}\right)\)

\(=6\left(6+6^2\right)+6^3\left(6+6^2\right)+.....+6^{99}\left(6+6^2\right)\)

\(=6.42+6^3.42+.........+6^{99}.42\)

\(=42\left(6+6^3+.........+6^{99}\right)⋮42\left(đpcm\right)\)

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

12 tháng 8 2023

2S = 1 + 3 + 3² + 3³ + ... + 3¹¹

⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²

⇒ 4S = 6S -  2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)

= 3¹² - 1

= 531440

⇒ S = 531440 : 4

= 132860 ⋮ 10

Vậy S ⋮ 10