S=1+2+2^2+2^3+...+2^99(^ là dấu mũ)(. là dấu chia hết)
Chứng tỏ rằng
a)S.3
b)S.31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2
6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.
Do đó, 2.1652.165 có chữ số tận cùng là 2
Suy ra 2.165−22.165−2 có chữ số tận cùng là 0
Hay 2.165−22.165−2 chia hết cho 10.
Vậy M chia hết cho 10.
dựa vô đó nha
nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha
a )
Ta co S = ( 2 + 22 + 23 + 24 + 25 ) + ...... + ( 296 + 297 + 298 +299 + 2100 )
= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )
= 2.31 + .....+ 296.31
= 31 ( 2 + ... + 296 ) chia het cho 31
b ) Goi d laf UC ( 3n+1 ; 4n+1 )
=> 3n + 1 ⋮ d va 4n + 1 ⋮ d
=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d
=> 1 ⋮ d => d = 1
Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau
c ) Xét x > 0
=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )
Xét x < 0
=> |x| + x = - x + x = 0 ( tm)
Vậy x < 0
Tổng các số hạng của S là 99 số hạng.
a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:
S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)
=> S=2.7+24.7+...+297.7=7(2+24+297)
=> S chia hết cho 7
b/
S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1
Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:
S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1
S=31.(1+25+...+295)-1
=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31
=> S không chia hết cho 31
\(S=6+6^2+6^3+.......+6^{100}\)
\(=\left(6+6^2\right)+\left(6^3+6^4\right)+......+\left(6^{99}+6^{100}\right)\)
\(=6\left(6+6^2\right)+6^3\left(6+6^2\right)+.....+6^{99}\left(6+6^2\right)\)
\(=6.42+6^3.42+.........+6^{99}.42\)
\(=42\left(6+6^3+.........+6^{99}\right)⋮42\left(đpcm\right)\)
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
2S = 1 + 3 + 3² + 3³ + ... + 3¹¹
⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²
⇒ 4S = 6S - 2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)
= 3¹² - 1
= 531440
⇒ S = 531440 : 4
= 132860 ⋮ 10
Vậy S ⋮ 10
điêu đấy phải là 8