Cho hình hành ABCD. Điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng :
a)Tứ giác AECF là hình bình hành
b)Các đường thẳng AC, BD,EF đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a. Vì ABCD là hbh nên AB//CD hay AE//CF
Mà AE=CF nên AECF là hbh
b. Gọi M là giao AC và BD
Vì ABCD là hbh nên M là trung điểm AC và BD
Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF
Vậy AC,BD,EF đồng quy tại M
Gọi O là giao điểm của hai đường chéo AC và BD.
Xét tứ giác AECF:
AB // CD (gt)
⇒ AE // CF
AE = CF (gt)
Suy ra: Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)
⇒ AC và EF cắt nhau tại trung điểm mỗi đường
OA = OC ( tính chất hình bình hành) ⇒ EF đi qua O
Vậy AC, BD, EF đồng quy tại O.
Hình bình hành ABCD có :
AC cắt BD tại trung điểm của AC và BD ( 1 )
Hình bình hành EBFD có :
EF cắt BD tại trung điểm của EF và BD ( 2 )
\(\Rightarrow\)Từ ( 1 ) và ( 2 ) suy ra AC ; BD ; EF đồng quy