vẽ 4 đương thăng sao cho số giao diem của chung la 1,2,3,4,5,6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BH // với AC
Ta có :
AB=BD
AH//AC
=>BH là đường trung bình của tam giác ADK
=> BH =1/2 AK
Xét ΔBHM và ΔKMC có :
KMC^ = BMH^ (đối đỉnh)
CM=MB
ˆMBH=ˆCKM ( so le trong )
=> ΔBHM và ΔKMC (g-c-g)
=> KC=BH = 1/2 AK
Hay AK= 2 KC
Kẻ \(BH\text{//}AC\), ta có :
\(AB=BD\)
\(AH\text{//}AC\)
\(\Rightarrow BH\) là đường trung bình của \(\bigtriangleup ADK\)
\(\Rightarrow BH=\frac{1}{2}AK\)
Xét \(\bigtriangleup BHM\) và \(\bigtriangleup KMC\) có
\(\widehat{KMC}=\widehat{BMH}\) (đđ)
\(CM=MC\)
\(\widehat{MBH}=\widehat{CKM}\) (so le trong)
\(\Rightarrow\bigtriangleup BHM\) và \(\bigtriangleup KMC\) (g.c.g)
\(\Rightarrow KC=BH=\frac{1}{2}AK\) hay \(AK=2KC\)
a, xét t.giác BMC và t.giác DMA có:
BM=DM(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)
AM=MC(gt)
=>t.giác BMC=t.giác DMA(c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC
b,xét t.giác MAB và t.giác MCD có:
MA=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
MB=MD(gt)
=>t.giác MAB=t.giác MCD(c.g.c)
=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC
xét t.giác DAB và t.giác DCB có:
\(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)
=>t.giác DAB=t.giác DCB(g.c.g)
=>DA=DC
=>t.giác ACD cân tại D
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD
ABCD là HBH => AB = CD
tg BEFD có : BE = DF ( cùng = 1/2 hai cạnh Ab và CD )
BE // DF ( AB // CD)
=> BEFD là HBH
b, TG AEFD có AE = DF ( cùng bằng 1/2 hai cạnh bằng nhau )
AE // BF ( AB // CD)
=> EFD là HBH
mình không biết cái đề nó có vấn đề gì ko chứ ko thề nào nó là hbh dc . nếu nó hình bh có ak vuông de nó sẽ laf hình thôi nhưng ko thề nào dc vì ao khong = ok lấy đâu ra hbh