Cho A = 1 + 7 + 72 + 73 + ........ + 7199
a / Chứng minh A chia hết cho 400
b / Tính tổng A
c / Tìm chữ số tận cùng của A
d / Chứng minh A chia hết cho 8
e / Tìm số dư của A khi chia cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
A có 1000 số hạng. ghép lần lượt 2 số hạng liên tiếp với nhau ta có
\(A=\left(1+7\right)+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{998}\left(1+7\right)\)
\(A=8\left(1+7^2+7^4+7^6+...+7^{996}+7^{998}\right)\) chia hết cho 4
a) Gọi 4 số tự nhiên liên tiếp là: a; a + 1; a + 2; a + 3
Tổng của 4 số trên là: a + (a + 1) + (a + 2) + (a + 3)
= a + a + 1 + a + 2 + a + 3
= 4a + 6 không chia hết cho 4 (chia 4 dư 2) (đpcm)
b) Gọi 2 số có cùng dư trong phép chia cho 7 là a và b
=> a = 7.m + d; b = 7.n + d (d là số dư; d khác 0)
Ta có: a - b = (7.m + d) - (7.n + d)
= 7.m + d - 7.n - d
= 7.m - 7.n
= 7.(m - n) chia hết cho 7 (đpcm)
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
A = 7 + 72 + 73 + ... + 736
Xét dãy số: 1; 2; 3;...; 36
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số là: (36 - 1): 1 + 1 = 36 (số hạng)
vì 36 : 2 = 18
Vậy nhóm hai số hạng liên tiếp của A vào nhau ta được:
A = (7 + 72) + (73 + 74) + ...+ (735 + 736)
A = 7.(1+ 7) + 73.(1+ 7) + .. + 735.(1 + 7)
A = (1+ 7).(7+ 73 + .. + 735)
A = 8.(7 + 73 + .. + 735)
A là số chẵn vì tích của một số chẵn với bất cứ số nguyên nào cũng là một số chẵn
A = 8.(7 + 73 + ... + 735) ⋮ 8 (đpcm)
Ta có A gồm 36 hạng tử vì 36 : 3 = 12
Vậy nhóm ba số hạng của A vào nhau ta được:
A = (7 + 72 + 73) + (74 + 75 + 76) + .. + (734 + 735 + 736)
A = 7.(1 + 7 + 72) + 74.(1 + 7 + 72) + ... + 734.(1 + 7 + 72)
A = (1 + 7 + 72).(7 + 74 + .. + 734)
A = (1+ 7+ 49).(7+ 74 + .. + 734)
A = 57.(7 + 74 + ... + 734)
A = 3.19.(7 + 74 + .. + 734)
A ⋮ 3; 19 (đpcm)