cho các số ko âm a b c thỏa mãn điều kiện sau a^2016+b^2016 =<1 vàx^2016+y^2016=<1 chứng minh rằng a^1976 x^40+b^1976 y^40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0 thì
12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0
Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1
Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0 thỏa mãn a b ≤ 1
Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0
a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0
Do 0 < a b ≤ 1 nên BĐT này đúng
Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0 thỏa mãn a b ≤ 1
Đặt t = a b , 0 < t ≤ t ta được 2 1 + t + 2015 t 2 ≤ 2016
2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0
BĐT này đúng ∀ t : 0 < t ≤ 1
Vậy 1 1 + a + 1 1 + b + 2015 a b ≤ 2016. Đẳng thức xảy ra a = b = 1
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)
\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)
Cộng từng vế của hệ (1), ta được:
\(2a+2b+3c=4033\)
\(\Leftrightarrow2a+2b+2c=4033-c\)
\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)
Vì c không âm nên \(4033-c\le4033\)
\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)
Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)
Lúc đó: \(a=2016;b=\frac{1}{2}\)
Ta có: a + 3c = 2016 ; a + 2b = 2017
Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033
Suy ra: 2 (a + b + c) = 4033 - c
Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất
Nên c nhỏ nhất , mà c >= 0 nên c = 0.
Từ đó ta suy ra : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5
Vậy Max P = 2016,5
Khi c = 0 ; a = 2016 ; b = 0,5
=> 2016+2017 = a+3c+a+2b
=> 2a+2b+2c = 4033
=> 2a+2b+2c = 4033 - c
=> 2.(a+b+c) = 4033 - c < = 4033 - 0 = 4033 ( vì c >= 0 )
=> a+b+c < = 4033/2
Dấu "=" xảy ra <=> c=0 ; a+3c = 2016 ; a+2b = 2017 <=> a=672 ; b=1345/2 ; c=0
Vậy ............
Tk mk nha