giải hệ pt
\(\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\\4\sqrt{x+2}+\sqrt{16-3y}=x^2+8\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
PT 1 \(\Leftrightarrow x-y.x^2+xy+y^2+3.x-y-3x^2+y^2-2=0\)
\(\Leftrightarrow x^3-3x^3+3x-1=y^3+3y^3+3y+1\)
\(\Leftrightarrow x-1^3=x+1^3\)
\(\Leftrightarrow x-y-2=0\)
Thay vào PT 2 nhân liên hợp.
PT 1 suy ra \(y=x-2\)thay vào PT 2, ta có:
\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)\(-2\le x\le\frac{22}{3}\)
\(\Leftrightarrow4.\sqrt{x+2}-2+\sqrt{22-3x}-4=x^2-4\)
\(\Leftrightarrow x-2.x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)
TH1:x=2 thay vào (1) suy ra y=0
TH2: f(x)= \(x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)*
ta thấy x=-1 là 1 nghiệm của PT(*)
NHận xét rằng giả xử có số a thoả \(-2\le x\le a\le\frac{22}{3}\)
Ta có: \(\sqrt{x+2}< \sqrt{a+2};\sqrt{22-3x}>\sqrt{22-3a}\)
\(\Rightarrow-\frac{4}{\sqrt{x+2}+2}< -\frac{4}{\sqrt{a+2}+2}\)
\(\frac{3}{\sqrt{22-3x}+4}< \frac{3}{\sqrt{22-3a}+4}\)
Suy ra f(x)<< f(a) suy hàm f(x) đồng biến
suy x=-1 thì f(x)=0
x<-1 thì f(x) <0
x>-1 thì f(x)>0
suy ra x=-1 là nghiệm duy nhất của(*)
thay vào (1) ta có y=-3
P/s: Tôi ko chắc, mới lớp 6 thôi